Basit öğe kaydını göster

dc.contributor.authorZontul, Metin
dc.contributor.authorErsan, Ziya Gökalp
dc.contributor.authorYelmen, İlkay
dc.contributor.authorÇevik, Taner
dc.contributor.authorAnka, Ferzat
dc.contributor.authorGesoğlu, Kevser
dc.date.accessioned2024-07-22T08:42:04Z
dc.date.available2024-07-22T08:42:04Z
dc.date.issued2024en_US
dc.identifier.citationZONTUL, Metin, Ziya Gökalp ERSAN, İlkay YELMEN, Taner ÇEVİK, Ferzat ANKA & Kevser GESOĞLU. "Enhancing GPS Accuracy with Machine Learning: A Comparative Analysis of Algorithms". Traitement du Signal, 41.3(2024): 1441-1450.en_US
dc.identifier.urihttps://www.iieta.org/journals/ts/paper/10.18280/ts.410332
dc.identifier.urihttps://hdl.handle.net/11352/4965
dc.description.abstractIn the realm of wireless communications, the Global Positioning System (GPS), integral to Global Navigation Satellite Systems (GNSS), finds extensive applications ranging from vehicle navigation to military operations, aircraft tracking, and Geographic Information Systems (GIS). The reliability of GPS is often compromised by errors particularly prevalent in dense and structurally complex environments, where signal attenuation by environmental obstacles like mountains and buildings is common. These challenges necessitate the deployment of high-cost, precision GPS receivers capable of enhanced signal tracking and acquisition. This study investigates the reduction of GPS positioning errors by implementing a machine learning framework, utilizing a dataset from vehicle tracking devices equipped with Novatel and Ublox technologies. Ten machine learning prediction algorithms were evaluated, focusing on techniques that introduce randomness for stability, employ proximity for predictions, incorporate regularization to prevent overfitting, and leverage both single and ensemble methods to refine analyses. Among the evaluated algorithms, the Extra Trees algorithm was distinguished by its superior performance, achieving a coefficient of determination (R²) of 99.6%, with the lowest error rates compared to its counterparts. The errors were quantified as Root Mean Square Error (RMSE) at 1.01E-4, Mean Absolute Error (MAE) at 4.14E-5, and Mean Square Error (MSE) at 1.03E+0 for normalized data. A comparative assessment across ten scenarios demonstrated that the machine learning-enhanced approach deviated by approximately 6.8 meters on average, markedly improving accuracy over traditional GPS methods and reducing positional deviations to a scale of meters. This advance represents a significant stride towards minimizing GPS inaccuracies in complex environments, providing a robust framework for enhancing navigational precision in critical applications.en_US
dc.language.isoengen_US
dc.publisherIIETAen_US
dc.relation.isversionof10.18280/ts.410332en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectMap Matchingen_US
dc.subjectMachine Learningen_US
dc.subjectLocation Estimationen_US
dc.subjectGlobal Positioning Systemen_US
dc.titleEnhancing GPS Accuracy with Machine Learning: A Comparative Analysis of Algorithmsen_US
dc.typearticleen_US
dc.relation.journalTraitement du Signalen_US
dc.contributor.departmentFSM Vakıf Üniversitesi, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümüen_US
dc.contributor.authorIDhttps://orcid.org/0000-0002-7557-2981en_US
dc.contributor.authorIDhttps://orcid.org/0000-0002-2575-0735en_US
dc.contributor.authorIDhttps://orcid.org/0000-0002-1684-9717en_US
dc.contributor.authorIDhttps://orcid.org/0000-0001-9653-5832en_US
dc.contributor.authorIDhttps://orcid.org/0000-0002-0354-9344en_US
dc.contributor.authorIDhttps://orcid.org/0009-0000-5979-9353en_US
dc.identifier.volume41en_US
dc.identifier.issue3en_US
dc.identifier.startpage1441en_US
dc.identifier.endpage1450en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.contributor.institutionauthorAnka, Ferzat


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster