• Türkçe
    • English
  • Türkçe 
    • Türkçe
    • English
  • Giriş
Öğe Göster 
  •   DSpace@FSM Vakıf
  • Fakülteler / Faculties
  • Mühendislik Fakültesi / Faculty of Engineering
  • Biyomedikal Mühendisliği Bölümü
  • Öğe Göster
  •   DSpace@FSM Vakıf
  • Fakülteler / Faculties
  • Mühendislik Fakültesi / Faculty of Engineering
  • Biyomedikal Mühendisliği Bölümü
  • Öğe Göster
JavaScript is disabled for your browser. Some features of this site may not work without it.

EEG Verilerinden CEEMD Algoritması Kullanılarak Epileptik Nöbetlerin Tespiti

Thumbnail

Göster/Aç

Konferans Öğesi (608.4Kb)

Erişim

info:eu-repo/semantics/embargoedAccess

Tarih

2024

Yazar

Başpınar, Ulvi
Yol, Şeyma
Aydın, Müberra
Gülhan, Rezzan
Us, Zeynep

Üst veri

Tüm öğe kaydını göster

Künye

BAŞPINAR, Ulvi, Şeyma YOL, Müberra AYDIN, Rezzan GÜLHAN & Zeynep US. "EEG Verilerinden CEEMD Algoritması Kullanılarak Epileptik Nöbetlerin Tespiti". 32nd Signal Processing and Communications Applications Conference, (2024): 1-4.

Özet

Epilepsi, beynin ani elektriksel deşarjları ile karakterize edilen Dünya Sağlık Örgütü'ne göre inmeden sonra en yaygın ikinci nörolojik bozukluktur. Absans epilepsi ise sık görülen epilepsi türlerinden biridir ve büyük ölçüde elektroensefalogram (EEG) sinyallerinde jeneralize diken ve dalga deşarjların tespitine dayanır. Elektroensefalografi, beynin farklı fizyolojik durumlarına ilişkin bilgiler içeren, beyin faaliyetlerini değerlendirmek amacıyla kullanılan yaygın bir ölçüm tekniğidir. Bu çalışmada Complete Ensemble Empirical Mode Decomposition tekniği kullanılarak ayrıştırılan EEG sinyal segmentlerinden çeşitli istatistiksel özellikler çıkarılmış ve makine öğrenim teknikleri kullanılarak nöbet sınıflandırması yapılmıştır. Önerilen algoritmanın etkinliği performans metrikleri ile doğrulanmış ve geleneksel çalışmalara kıyasla umut verici bir başarı göstermiştir.
 
Epilepsy is the second most common neurological disorder characterized by sudden electrical discharges of the brain after stroke according to the World Health Organization. Absence epilepsy is one of the most common types of epilepsy and is majorly based on the detection of generalised spike and wave discharges in Electroencephalogram (EEG) signals. Electroencephalography is a common measurement technique used to assess brain activity, containing information about different physiological states of the brain. In this study, various statistical features are extracted from EEG signal segments decomposed using the Complete Ensemble Mode Decomposition technique and seizure classification is performed using machine learning techniques. The effectiveness of the proposed algorithm is validated with performance metrics and shows promising success compared to traditional studies.
 

Kaynak

32nd Signal Processing and Communications Applications Conference

Bağlantı

https://hdl.handle.net/11352/4973

Koleksiyonlar

  • Biyomedikal Mühendisliği Bölümü [135]
  • Scopus İndeksli Yayınlar / Scopus Indexed Publications [756]
  • WOS İndeksli Yayınlar / WOS Indexed Publications [661]



DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 




| Politika | Rehber | İletişim |

DSpace@FSM

by OpenAIRE
Gelişmiş Arama

sherpa/romeo

Göz at

Tüm DSpaceBölümler & KoleksiyonlarTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreDile GöreBölüme GöreKategoriye GöreYayıncıya GöreErişim ŞekliKurum Yazarına GöreBu KoleksiyonTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreDile GöreBölüme GöreKategoriye GöreYayıncıya GöreErişim ŞekliKurum Yazarına Göre

Hesabım

GirişKayıt

İstatistikler

Google Analitik İstatistiklerini Görüntüle

DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 


|| Politika || Rehber || Kütüphane || FSM Vakıf Üniversitesi || OAI-PMH ||

FSM Vakıf Üniversitesi, İstanbul, Türkiye
İçerikte herhangi bir hata görürseniz, lütfen bildiriniz:

Creative Commons License
FSM Vakıf Üniversitesi Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@FSM:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.