Basit öğe kaydını göster

dc.contributor.authorKuş, Zeki
dc.contributor.authorKiraz, Berna
dc.contributor.authorAydın, Musa
dc.contributor.authorKiraz, Alper
dc.date.accessioned2024-12-17T06:21:32Z
dc.date.available2024-12-17T06:21:32Z
dc.date.issued2024en_US
dc.identifier.citationKUŞ, Zeki, Berna KİRAZ, Musa AYDIN & Alper KİRAZ. "BioNAS: Neural Architecture Search for Multiple Data Modalities in Biomedical Image Classification". Springer, 1138 (2024): 539-550.en_US
dc.identifier.urihttps://hdl.handle.net/11352/5120
dc.description.abstractNeural Architecture Search (NAS) for biomedical image classification has the potential to design highly efficient and accurate networks automatically for tasks from different modalities. This paper presents BioNAS, a new NAS approach designed for multi-modal biomedical image classification. Unlike other methods, BioNAS dynamically adjusts the number of stacks, modules, and feature maps in the network to improve both performance and complexity. The proposed approach utilizes an opposition-based differential evolution optimization technique to identify the optimal network structure. We have compared our methods on two public multi-class classification datasets with different data modalities: DermaMNIST and OrganCMNIST. BioNAS outperforms hand-designed networks, automatic machine learning frameworks, and most NAS studies in terms of accuracy (ACC) and area under the curve (AUC) on the OrganCMNIST and DermaMNIST datasets. The proposed networks significantly outperform all other methods on the DermaMNIST dataset, achieving accuracy improvements of up to 4.4 points and AUC improvements of up to 2.6 points, and also surpass other studies by up to 5.4 points in accuracy and 0.6 points in AUC on OrganCMNIST. Moreover, the proposed networks have fewer parameters than hand-designed architectures like ResNet-18 and ResNet-50. The results indicate that BioNAS has the potential to be an effective alternative to hand-designed networks and automatic frameworks, offering a competitive solution in the classification of biomedical images.en_US
dc.language.isoengen_US
dc.publisherSpringeren_US
dc.relation.isversionof10.1007/978-3-031-70924-1_41en_US
dc.rightsinfo:eu-repo/semantics/embargoedAccessen_US
dc.subjectNeural Architecture Searchen_US
dc.subjectOpposition-Based Differential Evolutionen_US
dc.subjectBiomedical Image Classificationen_US
dc.titleBioNAS: Neural Architecture Search for Multiple Data Modalities in Biomedical Image Classificationen_US
dc.typearticleen_US
dc.relation.journalRecent Trends and Advances in Artificial Intelligenceen_US
dc.contributor.departmentFSM Vakıf Üniversitesi, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümüen_US
dc.identifier.volume1138en_US
dc.identifier.startpage539en_US
dc.identifier.endpage550en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.contributor.institutionauthorKuş, Zeki
dc.contributor.institutionauthorKiraz, Berna
dc.contributor.institutionauthorAydın, Musa


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster