Basit öğe kaydını göster

dc.contributor.authorAbdellatif, Abdelrahman Taha Abdeltawab
dc.contributor.authorİslamoğlu, Ertuğrul
dc.contributor.authorNizam, Ali
dc.date.accessioned2024-12-17T06:22:58Z
dc.date.available2024-12-17T06:22:58Z
dc.date.issued2024en_US
dc.identifier.citationABDELLATİF, Abdelrahman Taha Abdeltawab. "Analysis of Code Similarity with Triplet Loss-Based Deep Learning System". Recent Trends and Advances in Artificial Intelligence, 1138 (2024): 351-361.en_US
dc.identifier.urihttps://hdl.handle.net/11352/5121
dc.description.abstractNowadays, several plagiarism detection tools based on static code features are available for code similarity detection. The application of deep learning in this domain represents an emerging area of research. This research proposes an innovative deep learning system based on triplet loss for detecting code similarity. Our training approach involves generating embeddings for pairs of code snippets to increase the detection accuracy. The system uses a tokenization and embedding mechanism specifically tailored for Java code snippets using CodeBERT, a pre-trained model that combines programming language and natural language processing. After the learning phase, we employed transfer learning with a classifier to detect code similarity. The effectiveness of the proposed system is evaluated by a reduction in loss values and an improvement in accuracy compared to models without the integration of triplet loss. The results indicate that our model can identify code similarities and distinguish between snippets with high accuracy, improving the capability of code similarity detection, clone detection, and source code analysis.en_US
dc.language.isoengen_US
dc.publisherSpringeren_US
dc.relation.isversionof10.1007/978-3-031-70924-1_26en_US
dc.rightsinfo:eu-repo/semantics/embargoedAccessen_US
dc.subjectDeep Learningen_US
dc.subjectCode Embeddingen_US
dc.subjectCode Similarity Analysisen_US
dc.subjectContrastive Learningen_US
dc.subjectTriplet Lossen_US
dc.titleAnalysis of Code Similarity with Triplet Loss-Based Deep Learning Systemen_US
dc.typearticleen_US
dc.relation.journalRecent Trends and Advances in Artificial Intelligenceen_US
dc.contributor.departmentFSM Vakıf Üniversitesi, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümüen_US
dc.identifier.volume1138en_US
dc.identifier.startpage351en_US
dc.identifier.endpage361en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.contributor.institutionauthorAbdellatif, Abdelrahman Taha Abdeltawab
dc.contributor.institutionauthorİslamoğlu, Ertuğrul
dc.contributor.institutionauthorNizam, Ali


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster