Basit öğe kaydını göster

dc.contributor.authorİslamoğlu, Ertuğrul
dc.contributor.authorAdalı, Ömer Kerem
dc.contributor.authorAydın, Musa
dc.contributor.authorNizam, Ali
dc.date.accessioned2025-02-24T08:41:52Z
dc.date.available2025-02-24T08:41:52Z
dc.date.issued2025en_US
dc.identifier.citationNİZAM, Ali, Ertuğrul İSLMAOĞLU, Ömer Kerem ADALI & Musa AYDIN. "Optimizing Pre-Trained Code Embeddings With Triplet Loss for Code Smell Detection." IEEE Access, 13 (2025): 1-16.en_US
dc.identifier.urihttps://ieeexplore.ieee.org/document/10890964
dc.identifier.urihttps://hdl.handle.net/11352/5189
dc.description.abstractCode embedding represents code semantics in vector form. Although code embedding-based systems have been successfully applied to various source code analysis tasks, further research is required to enhance code embedding for better code analysis capabilities, aiming to surpass the performance and functionality of static code analysis tools. In addition, standard methods for improving code embedding are essential to develop more effective embedding-based systems, similar to augmentation techniques in the image processing domain. This study aims to create a contrastive learning-based system to explore the potential of a generic method for enhancing code embedding for code classification tasks. A triplet lossbased deep learning network is designed to optimize in-class similarity and increase the distance between classes. An experimental dataset that contains code from Java, Python, and PHP programming languages and 4 different code smells is created by collecting code from open-source repositories on GitHub. We evaluate the proposed system’s effectiveness with widely used BERT, CodeBERT, and GraphCodeBERT pretrained models to create code embedding for the code classification task of code smell detection. Our findings indicate that the proposed system may offer improvements in accuracy, an average of 8% and a maximum of 13% for models. These results suggest that incorporating contrastive learning techniques into the generation process of code representation as a preprocessing step can enhance performance in code analysis.en_US
dc.language.isoengen_US
dc.publisherİEEEen_US
dc.relation.isversionof10.1109/ACCESS.2025.3542566en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectCode embeddingen_US
dc.subjectContrastive learningen_US
dc.subjectTriplet lossen_US
dc.subjectCode smell detectionen_US
dc.titleOptimizing Pre-Trained Code Embeddings With Triplet Loss for Code Smell Detectionen_US
dc.typearticleen_US
dc.relation.journalIEEE Accessen_US
dc.contributor.departmentFSM Vakıf Üniversitesien_US
dc.contributor.authorIDhttps://orcid.org/0000-0002-5613-0686en_US
dc.contributor.authorIDhttps://orcid.org/0009-0005-8400-5611en_US
dc.contributor.authorIDhttps://orcid.org/0000-0002-5825-2230en_US
dc.identifier.volume13en_US
dc.identifier.startpage1en_US
dc.identifier.endpage16en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.contributor.institutionauthorNizam, Ali
dc.contributor.institutionauthorİslamoğlu, Ertuğrul
dc.contributor.institutionauthorAdalı, Ömer Kerem
dc.contributor.institutionauthorAydın, Musa


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster