Basit öğe kaydını göster

dc.contributor.authorZümberoğlu, Kevser Büşra
dc.contributor.authorDik, Sümeyye Zülal
dc.contributor.authorKaradeniz, Büşra Sinem
dc.contributor.authorSahmoud, Shaaban
dc.date.accessioned2025-03-24T13:19:59Z
dc.date.available2025-03-24T13:19:59Z
dc.date.issued2025en_US
dc.identifier.citationZÜMBEROĞLU, Kevser Büşra, Sümeyye Zülal DİK, Büşra Sinem KARADENİZ & Shaaban SAHMOUD. "Towards Better Sentiment Analysis in the Turkish Language: Dataset Improvements and Model Innovations". Applied Sciences-Basel, 15.4 (2025): 1-22.en_US
dc.identifier.urihttps://www.mdpi.com/2076-3417/15/4/2062
dc.identifier.urihttps://hdl.handle.net/11352/5249
dc.description.abstractSentiment analysis in the Turkish language has gained increasing attention due to the growing availability of Turkish textual data across various domains. However, existing datasets often suffer from limitations such as insufficient size, lack of diversity, and annotation inconsistencies, which hinder the development of robust and accurate sentiment analysis models. In this study, we present a novel enhanced dataset specifically designed to address these challenges, providing a comprehensive and high-quality resource for Turkish sentiment analysis. We perform a comparative evaluation of previously proposed models using our dataset to assess their performance and limitations. Experimental findings demonstrate the effectiveness of the presented dataset and trained models, offering valuable insights for advancing sentiment analysis research in the Turkish language. These results underscore the critical role of the enhanced dataset in bridging the gap between existing datasets and the importance of training the modern sentiment analysis models on scalable, balanced, and curated datasets. This can offer valuable insights for advancing sentiment analysis research in the Turkish language. Furthermore, the experimental results represent an important step in overcoming the challenges associated with Turkish sentiment analysis and improving the performance of existing models.en_US
dc.language.isoengen_US
dc.publisherMDPIen_US
dc.relation.isversionof10.3390/app15042062en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectSentiment Analysisen_US
dc.subjectTurkish Languageen_US
dc.subjectTurkish Sentiment Analysisen_US
dc.subjectBERTen_US
dc.titleTowards Better Sentiment Analysis in the Turkish Language: Dataset Improvements and Model Innovationsen_US
dc.typearticleen_US
dc.relation.journalApplied Sciences-Baselen_US
dc.contributor.departmentFSM Vakıf Üniversitesi, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümüen_US
dc.contributor.authorIDhttps://orcid.org/0009-0004-6710-7192en_US
dc.contributor.authorIDhttps://orcid.org/0009-0002-5629-6413en_US
dc.contributor.authorIDhttps://orcid.org/0009-0005-9282-4609en_US
dc.contributor.authorIDhttps://orcid.org/0000-0003-0148-2382en_US
dc.identifier.volume15en_US
dc.identifier.issue4en_US
dc.identifier.startpage1en_US
dc.identifier.endpage22en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.contributor.institutionauthorZümberoğlu, Kevser Büşra
dc.contributor.institutionauthorDik, Sümeyye Zülal
dc.contributor.institutionauthorKaradeniz, Büşra Sinem
dc.contributor.institutionauthorSahmoud, Shaaban


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster