Basit öğe kaydını göster

dc.contributor.authorGöksu, Tuğçe
dc.contributor.authorKuş, Zeki
dc.contributor.authorAydın, Musa
dc.date.accessioned2025-09-16T13:30:43Z
dc.date.available2025-09-16T13:30:43Z
dc.date.issued2025en_US
dc.identifier.citationGÖKSU, Tuğçe, Zeki KUŞ & Musa AYDIN. "Leukemia White Blood Cell Classification Using DenseNet121 Embeddings and Ensemble Learning". 2025 9th International Symposium on Innovative Approaches in Smart Technologies (ISAS), (2025): 1-6.en_US
dc.identifier.urihttps://hdl.handle.net/11352/5580
dc.description.abstractLeukemia diagnosis through white blood cell (WBC) classification remains challenging, requiring expert pathologists and significant time investment. This study presents a hybrid approach for leukemia WBC classification using DenseNet121 embeddings combined with ensemble learning techniques. We utilize transfer learning with a pre-trained DenseNet121 model to extract 1024-dimensional feature embeddings from WBC images, which serve as input to various machine learning classifiers. Our methodology is evaluated on the comprehensive LeukemiaAttri dataset, which contains 14 different WBC types captured from two microscopes at three magnification levels. Experimental results demonstrate that tree-based ensemble methods, particularly CatBoost, XGBoost, and Multi-Layer Perceptron, achieve the best performance across different experimental settings. CatBoost achieves the highest accuracy of 56.3% on the H 100X C2 configuration, while MLP reached 55.3% accuracy on H 100X C1. Despite the dataset’s challenging nature due to image quality variations and class imbalance, our approach provides competitive results compared to previous YOLO-based methods. The study highlights the potential of embedding-based classification as an alternative to direct image-based deep learning models for leukemia diagnosis. It offers insights into classifier performance across various experimental conditions while maintaining computational efficiency.en_US
dc.language.isoengen_US
dc.publisherIEEEen_US
dc.relation.isversionof10.1109/ISAS66241.2025.11101850en_US
dc.rightsinfo:eu-repo/semantics/embargoedAccessen_US
dc.subjectWhite Blood Cell Classificationen_US
dc.subjectLeukemiaen_US
dc.subjectTreebased Classificationen_US
dc.titleLeukemia White Blood Cell Classification Using DenseNet121 Embeddings and Ensemble Learningen_US
dc.typeconferenceObjecten_US
dc.relation.journal2025 9th International Symposium on Innovative Approaches in Smart Technologies (ISAS)en_US
dc.contributor.departmentFSM Vakıf Üniversitesi, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümüen_US
dc.identifier.startpage1en_US
dc.identifier.endpage6en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.contributor.institutionauthorGöksu, Tuğçe
dc.contributor.institutionauthorKuş, Zeki
dc.contributor.institutionauthorAydın, Musa


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster