• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   FSM Vakıf
  • Fakülteler / Faculties
  • Mühendislik Fakültesi / Faculty of Engineering
  • Elektrik-Elektronik Mühendisliği Bölümü
  • View Item
  •   FSM Vakıf
  • Fakülteler / Faculties
  • Mühendislik Fakültesi / Faculty of Engineering
  • Elektrik-Elektronik Mühendisliği Bölümü
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Structural and Optical Properties of ZnSe and ZnSe/ZnS Quantum Dots Prepared by Using Green Method

Thumbnail

View/Open

Ana Makale (1.911Mb)

Access

info:eu-repo/semantics/embargoedAccess

Date

2025

Author

Belaribi, Imene
Balaban, Mesut
Bendella, Soumia
Ünlü, Hilmi

Metadata

Show full item record

Citation

BELARIBI, Imene, Mesut BALABAN, Soumia BENDELLA & Hilmi ÜNLÜ. "Structural and Optical Properties of ZnSe and ZnSe/ZnS Quantum Dots Prepared by Using Green Method". Applied Physics A: Materials Science and Processing, 131.11 (2025): 1-12.

Abstract

We report the green synthesis, structural characterization, optical measurements, and theoretical modeling of ZnSe and ZnSe/ZnS quantum dots (QDs) synthesized via a rapid aqueous method using thioglycolic acid (TGA) as a stabilizer. The synthesis was carried out at 90 °C and pH 8.5, employing zinc acetate, NaHSe as a selenium source, and thiourea for ZnS shell growth. X-ray diffraction (XRD) analysis confirmed cubic-phase ZnSe with a dominant (111) peak, while ZnSe/ZnS core–shell samples exhibited additional peaks attributed to hexagonal ZnS, indicating successful passivation. Williamson–Hall analysis yields a core crystallite size of ~ 2.3 nm and reveals a compressive interfacial strain of − 2.2% in the core–shell heterostructure. Optical characterization via UV-Vis and photoluminescence (PL) spectroscopy techniques showed redshift in both absorption and emission with increasing reaction time and temperature, consistent with quantum size effects and shell-induced modifications. Theoretical modeling by using modified Brus equation based on Kane’s effective mass approximation, and a recently developed thermoelastic strain theory quantitatively explained the bandgap evolution by accounting for size-dependent confinement and elastic strain at the core–shell interface. Calculated bandgap values showed strong agreement with experimental data: 3.67–3.71 eV from absorption and 3.39–3.41 eV from PL. The integration of green chemistry and strain-sensitive bandgap

Source

Applied Physics A: Materials Science and Processing

Volume

131

Issue

11

URI

https://hdl.handle.net/11352/5679

Collections

  • Elektrik-Elektronik Mühendisliği Bölümü [75]
  • Scopus İndeksli Yayınlar / Scopus Indexed Publications [756]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Policy | Guide | Contact |

DSpace@FSM

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Policy || Guide || Library || FSM Vakıf University || OAI-PMH ||

FSM Vakıf University, İstanbul, Turkey
If you find any errors in content, please contact:

Creative Commons License
FSM Vakıf University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@FSM:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.