• Türkçe
    • English
  • Türkçe 
    • Türkçe
    • English
  • Giriş
Öğe Göster 
  •   DSpace@FSM Vakıf
  • Fakülteler / Faculties
  • Mühendislik Fakültesi / Faculty of Engineering
  • İnşaat Mühendisliği Bölümü
  • Öğe Göster
  •   DSpace@FSM Vakıf
  • Fakülteler / Faculties
  • Mühendislik Fakültesi / Faculty of Engineering
  • İnşaat Mühendisliği Bölümü
  • Öğe Göster
JavaScript is disabled for your browser. Some features of this site may not work without it.

A Data-Driven Approach to Predict Hydrometeorological Variability and Fluctuations in Lake Water Levels a Data-Driven Approach to Predict Hydrometeorological Variability And Fluctuations in Lake Water Levels

Thumbnail

Göster/Aç

Ana Makale (2.139Mb)

Erişim

info:eu-repo/semantics/openAccess

Tarih

2023

Yazar

Kesgin, Remziye İlayda Tan
Demir, İbrahim
Kesgin, Erdal
Abdelkader, Mohamed
Ağaçcıoğlu, Hayrullah

Üst veri

Tüm öğe kaydını göster

Künye

KESGİN, Remziye İlayda Tan, İbrahim DEMİR, Erdal KESGİN, Mohamed ABDELKADER & Hayrullah AĞAÇCIOĞLU. "A Data-Driven Approach to Predict Hydrometeorological Variability and Fluctuations in Lake Water Levels a Data-Driven Approach to Predict Hydrometeorological Variability And Fluctuations in Lake Water Levels". Journal of Water and Land Development, 58.7-8 (2023): 158-170.

Özet

Beyşehir Lake is the largest freshwater lake in the Mediterranean region of Turkey that is used for drinking and irrigation purposes. The aim of this paper is to examine the potential for data-driven methods to predict long-term lake levels. The surface water level variability was forecast using conventional machine learning models, including autoregressive moving average (ARMA), autoregressive integrated moving average (ARIMA), and seasonal autoregressive integrated moving average (SARIMA). Based on the monthly water levels of Beyşehir Lake from 1992 to 2016, future water levels were predicted up to 24 months in advance. Water level predictions were obtained using conventional time series stochastic models, including autoregressive moving average, autoregressive integrated moving average, and seasonal autoregressive integrated moving average. Using historical records from the same period, prediction models for precipitation and evaporation were also developed. In order to assess the model’s accuracy, statistical performance metrics were applied. The results indicated that the seasonal autoregressive integrated moving average model outperformed all other models for lake level, precipitation, and evaporation prediction. The obtained results suggested the importance of incorporating the seasonality component for climate predictions in the region. The findings of this study demonstrated that simple stochastic models are effective in predicting the temporal evolution of hydrometeorological variables and fluctuations in lake water levels.

Kaynak

Journal of Water and Land Development

Cilt

58

Sayı

7-8

Bağlantı

https://www.jwld.pl/files/2023-03-JWLD-18.pdf
https://hdl.handle.net/11352/5255

Koleksiyonlar

  • İnşaat Mühendisliği Bölümü [127]
  • Scopus İndeksli Yayınlar / Scopus Indexed Publications [669]



DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 




| Politika | Rehber | İletişim |

DSpace@FSM

by OpenAIRE
Gelişmiş Arama

sherpa/romeo

Göz at

Tüm DSpaceBölümler & KoleksiyonlarTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreDile GöreBölüme GöreKategoriye GöreYayıncıya GöreErişim ŞekliKurum Yazarına GöreBu KoleksiyonTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreDile GöreBölüme GöreKategoriye GöreYayıncıya GöreErişim ŞekliKurum Yazarına Göre

Hesabım

GirişKayıt

İstatistikler

Google Analitik İstatistiklerini Görüntüle

DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 


|| Politika || Rehber || Kütüphane || FSM Vakıf Üniversitesi || OAI-PMH ||

FSM Vakıf Üniversitesi, İstanbul, Türkiye
İçerikte herhangi bir hata görürseniz, lütfen bildiriniz:

Creative Commons License
FSM Vakıf Üniversitesi Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@FSM:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.