Basit öğe kaydını göster

dc.contributor.authorBirsel, Sema Ertan
dc.contributor.authorDemirci, Ekrem
dc.contributor.authorŞeker, Ali
dc.contributor.authorAyanoğlu, Kadriye Yasemin Usta
dc.contributor.authorÖncü, Emir
dc.contributor.authorÇiftçi, Fatih
dc.date.accessioned2025-05-26T12:14:25Z
dc.date.available2025-05-26T12:14:25Z
dc.date.issued2025en_US
dc.identifier.citationBİRSEL, Sema Ertan, Ekrem DEMİRCİ, Ali ŞEKER, Kadriye Yasemin Usta AYANOĞLU, Emir ÖNCÜ & Fatih ÇİFTÇİ. "Machine Learning-Assisted Classification of Hip Conditions in Pediatric Cerebral Palsy Patients Using Migration Percentage Measurements". Bone Reports, 25 (2025): 1-10.en_US
dc.identifier.urihttps://hdl.handle.net/11352/5312
dc.description.abstractHip displacement is a significant concern in children with cerebral palsy (CP), necessitating accurate and timely assessment to prevent long-term complications. This study developed a support vector machine (SVM) model to classify hip conditions using migration percentage (MP) measurements obtained from 176 hips across 88 anteroposterior pelvic radiographs. MP values were categorized into three groups: normal (MP ≤ 30 %), risky (30 % < MP ≤ 60 %), and dislocated (MP > 60 %). The SVM model was evaluated using stratified k-fold crossvalidation, with accuracy, precision, recall, and F1-scores as key metrics. Its classifications were compared to manual evaluations performed by an orthopedic resident and a pediatric orthopedic surgeon. The model achieved an overall accuracy of 92.898 %, surpassing the consistency and reliability of manual assessments, particularly in identifying dislocated hips. Statistical analysis showed no significant differences between the model's MP measurements and those of the clinicians, validating its effectiveness. This study highlights the potential of SVM models to enhance diagnostic accuracy, reduce variability in evaluations, and support clinical decision-making. Future research should expand the dataset and incorporate advanced machine learning models to further improve diagnostic precision.en_US
dc.language.isoengen_US
dc.publisherElsevieren_US
dc.relation.isversionof10.1016/j.bonr.2025.101852en_US
dc.rightsinfo:eu-repo/semantics/embargoedAccessen_US
dc.subjectArtificial Intelligenceen_US
dc.subjectBone Diseasesen_US
dc.subjectCase Studyen_US
dc.subjectCerebral Palsyen_US
dc.subjectMachine Learningen_US
dc.titleMachine Learning-Assisted Classification of Hip Conditions in Pediatric Cerebral Palsy Patients Using Migration Percentage Measurementsen_US
dc.typearticleen_US
dc.relation.journalBone Reportsen_US
dc.contributor.departmentFSM Vakıf Üniversitesi, Mühendislik Fakültesi, Biyomedikal Mühendisliği Bölümüen_US
dc.identifier.volume25en_US
dc.identifier.startpage1en_US
dc.identifier.endpage10en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.contributor.institutionauthorÖncü, Emir
dc.contributor.institutionauthorÇiftçi, Fatih


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster