• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   FSM Vakıf
  • Fakülteler / Faculties
  • Mühendislik Fakültesi / Faculty of Engineering
  • Biyomedikal Mühendisliği Bölümü
  • View Item
  •   FSM Vakıf
  • Fakülteler / Faculties
  • Mühendislik Fakültesi / Faculty of Engineering
  • Biyomedikal Mühendisliği Bölümü
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Multimodal AI Framework for Lung Cancer Diagnosis: Integrating CNN and ANN Models for Imaging and Clinical Data Analysis

Thumbnail

View/Open

Makale (5.901Mb)

Access

info:eu-repo/semantics/embargoedAccess

Date

2025

Author

Öncü, Emir
Çiftçi, Fatih

Metadata

Show full item record

Citation

ÖNCÜ, Emir & Fatih ÇİFTÇİ. “Multimodal AI Framework for Lung Cancer Diagnosis: Integrating CNN and ANN Models for Imaging and Clinical Data Analysis”. Computers in Biology and Medicine, 193 (2025): 1-12.

Abstract

Lung cancer remains a leading cause of cancer-related mortality worldwide, emphasizing the critical need for accurate and early diagnostic solutions. This study introduces a novel multimodal artificial intelligence (AI) framework that integrates Convolutional Neural Networks (CNNs) and Artificial Neural Networks (ANNs) to improve lung cancer classification and severity assessment. The CNN model, trained on 1019 preprocessed CT images, classified lung tissue into four histological categories, adenocarcinoma, large cell carcinoma, squamous cell carcinoma, and normal, with a weighted accuracy of 92 %. Interpretability is enhanced using Gradientweighted Class Activation Mapping (Grad-CAM), which highlights the salient image regions influencing the model’s predictions. In parallel, an ANN trained on clinical data from 999 patients—spanning 24 key features such as demographic, symptomatic, and genetic factors—achieves 99 % accuracy in predicting cancer severity (low, medium, high). SHapley Additive exPlanations (SHAP) are employed to provide both global and local interpretability of the ANN model, enabling transparent decision-making. Both models were rigorously validated using k-fold cross-validation to ensure robustness and reduce overfitting. This hybrid approach effectively combines spatial imaging data and structured clinical information, demonstrating strong predictive performance and offering an interpretable and comprehensive AI-based solution for lung cancer diagnosis and management.

Source

Computers in Biology and Medicine

Issue

193

URI

https://hdl.handle.net/11352/5672

Collections

  • Biyomedikal Mühendisliği Bölümü [135]
  • Scopus İndeksli Yayınlar / Scopus Indexed Publications [756]
  • Teknoloji Transfer Ofisi (TTO) [20]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Policy | Guide | Contact |

DSpace@FSM

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Policy || Guide || Library || FSM Vakıf University || OAI-PMH ||

FSM Vakıf University, İstanbul, Turkey
If you find any errors in content, please contact:

Creative Commons License
FSM Vakıf University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@FSM:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.