• Türkçe
    • English
  • Türkçe 
    • Türkçe
    • English
  • Giriş
Öğe Göster 
  •   DSpace@FSM Vakıf
  • Merkezler / Centers
  • Veri Bilimi Uygulama ve Araştırma Merkezi (VEBİM)
  • Öğe Göster
  •   DSpace@FSM Vakıf
  • Merkezler / Centers
  • Veri Bilimi Uygulama ve Araştırma Merkezi (VEBİM)
  • Öğe Göster
JavaScript is disabled for your browser. Some features of this site may not work without it.

A Metaheuristic and Neural Network-Based Framework for Automated Software Test Oracles Under Limited Test Data Conditions

Thumbnail

Göster/Aç

Ana Makale (2.419Mb)

Erişim

info:eu-repo/semantics/embargoedAccess

Tarih

2025

Yazar

Arasteh, Bahman
Bulut, Faruk
İnce, İbrahim Furkan
Sefati, Seyed Salar
Kusetoğulları, Hüseyin
Kiani, Farzad

Üst veri

Tüm öğe kaydını göster

Künye

ARASTEH, Bahman, Faruk BULUT, İbrahim Faruk İNCE, Seyed Salar SEFATİ, Hüseyin KUŞETOĞULLARI & Farzad KIANI. "A Metaheuristic and Neural Network-Based Framework for Automated Software Test Oracles Under Limited Test Data Conditions". Journal of Electronic Testing,(2025): 1-21.

Özet

With the growing complexity of modern software systems, the demand for effective and efficient testing techniques has become an important aspect of the software development process. Software Test Oracles (STOs) play a vital role in testing by determining whether a program behaves as expected for a given input. This study introduces a novel automated STO framework that utilizes metaheuristic algorithms and ML techniques to enhance testing precision and reduce the testing cost. The proposed approach begins with generating coverage-based test data using a hybrid of the Imperialist Competitive Algorithm (ICA) and Genetic Algorithm (GA). The initial test data is optimized using Hamming distance to address redundant test data and improve efficiency. This reduced dataset is used to train a multi-layer perceptron and to create an STO that accurately predicts the software under test’s expected output. The oracle was validated using both original and mutant versions of standard benchmark programs. Additionally, an automated platform has been developed to support Oracle creation, test case generation, and validation. Experimental results demonstrate that the proposed STO attains high accuracy (96.70%) and recall (98.63%), highlighting its effectiveness when a limited quantity of test data is available.

Kaynak

Journal of Electronic Testing

Bağlantı

https://hdl.handle.net/11352/5739

Koleksiyonlar

  • Scopus İndeksli Yayınlar / Scopus Indexed Publications [756]
  • Veri Bilimi Uygulama ve Araştırma Merkezi (VEBİM) [23]
  • WOS İndeksli Yayınlar / WOS Indexed Publications [661]



DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 




| Politika | Rehber | İletişim |

DSpace@FSM

by OpenAIRE
Gelişmiş Arama

sherpa/romeo

Göz at

Tüm DSpaceBölümler & KoleksiyonlarTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreDile GöreBölüme GöreKategoriye GöreYayıncıya GöreErişim ŞekliKurum Yazarına GöreBu KoleksiyonTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreDile GöreBölüme GöreKategoriye GöreYayıncıya GöreErişim ŞekliKurum Yazarına Göre

Hesabım

GirişKayıt

İstatistikler

Google Analitik İstatistiklerini Görüntüle

DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 


|| Politika || Rehber || Kütüphane || FSM Vakıf Üniversitesi || OAI-PMH ||

FSM Vakıf Üniversitesi, İstanbul, Türkiye
İçerikte herhangi bir hata görürseniz, lütfen bildiriniz:

Creative Commons License
FSM Vakıf Üniversitesi Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@FSM:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.