Basit öğe kaydını göster

dc.contributor.authorArasteh, Bahman
dc.contributor.authorBulut, Faruk
dc.contributor.authorİnce, İbrahim Furkan
dc.contributor.authorSefati, Seyed Salar
dc.contributor.authorKusetoğulları, Hüseyin
dc.contributor.authorKiani, Farzad
dc.date.accessioned2025-11-27T13:55:42Z
dc.date.available2025-11-27T13:55:42Z
dc.date.issued2025en_US
dc.identifier.citationARASTEH, Bahman, Faruk BULUT, İbrahim Faruk İNCE, Seyed Salar SEFATİ, Hüseyin KUŞETOĞULLARI & Farzad KIANI. "A Metaheuristic and Neural Network-Based Framework for Automated Software Test Oracles Under Limited Test Data Conditions". Journal of Electronic Testing,(2025): 1-21.en_US
dc.identifier.urihttps://hdl.handle.net/11352/5739
dc.description.abstractWith the growing complexity of modern software systems, the demand for effective and efficient testing techniques has become an important aspect of the software development process. Software Test Oracles (STOs) play a vital role in testing by determining whether a program behaves as expected for a given input. This study introduces a novel automated STO framework that utilizes metaheuristic algorithms and ML techniques to enhance testing precision and reduce the testing cost. The proposed approach begins with generating coverage-based test data using a hybrid of the Imperialist Competitive Algorithm (ICA) and Genetic Algorithm (GA). The initial test data is optimized using Hamming distance to address redundant test data and improve efficiency. This reduced dataset is used to train a multi-layer perceptron and to create an STO that accurately predicts the software under test’s expected output. The oracle was validated using both original and mutant versions of standard benchmark programs. Additionally, an automated platform has been developed to support Oracle creation, test case generation, and validation. Experimental results demonstrate that the proposed STO attains high accuracy (96.70%) and recall (98.63%), highlighting its effectiveness when a limited quantity of test data is available.en_US
dc.language.isoengen_US
dc.publisherSpringeren_US
dc.relation.isversionof10.1007/s10836-025-06210-5en_US
dc.rightsinfo:eu-repo/semantics/embargoedAccessen_US
dc.subjectRedundant Input Dataen_US
dc.subjectHamming Distanceen_US
dc.subjectImperialist Competitive Algorithmen_US
dc.subjectAutomated Software Testingen_US
dc.subjectMulti-Layer perceptron (MLP)en_US
dc.titleA Metaheuristic and Neural Network-Based Framework for Automated Software Test Oracles Under Limited Test Data Conditionsen_US
dc.typearticleen_US
dc.relation.journalJournal of Electronic Testingen_US
dc.contributor.departmentFSM Vakıf Üniversitesien_US
dc.contributor.authorIDhttps://orcid.org/0000-0001-5202-6315en_US
dc.identifier.startpage1en_US
dc.identifier.endpage21en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.contributor.institutionauthorKiani, Farzad


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster