Basit öğe kaydını göster

dc.contributor.authorYücer, Şeydanur
dc.contributor.authorSaraç, Begüm
dc.contributor.authorÖzarslan, Ali Can
dc.contributor.authorSakarya, Deniz
dc.contributor.authorÖzerol, Esma Ahlatçıoğlu
dc.contributor.authorÇiftçi, Fatih
dc.date.accessioned2025-11-27T14:07:48Z
dc.date.available2025-11-27T14:07:48Z
dc.date.issued2025en_US
dc.identifier.citationYÜCER, Şeydanur, Begüm SARAÇ, Ali Can ÖZARSLAN, Deniz SAKARYA, Esma Ahlatçıoğlu, ÖZEROL & Fatih ÇİFTÇİ. "Functional Bioink and 3D Bioprinting Tissue Scaffold Applications for Spinal Cord Injury". Annals of Biomedical Engineering, (2025): 1-28.en_US
dc.identifier.urihttps://hdl.handle.net/11352/5744
dc.description.abstractSpinal cord injury (SCI), commonly resulting from sudden trauma such as traffic or sports accidents, leads to severe disruption of axonal connections and loss of sensory and motor function below the injury site. Despite numerous therapeutic efforts, effective strategies for neural repair remain limited. Tissue engineering has emerged as a promising approach for axonal regeneration, particularly through the design of three-dimensional (3D) polymeric scaffolds that can restore the structural and functional integrity of the injured spinal cord. This review focuses on recent advances in biomaterials and scaffold designs developed for SCI repair, emphasizing the role of nanocomposite systems that combine graphene oxide (GO), synthetic polymers such as PLGA–PEG, and bioactive ceramics like hydroxyapatite (HA). These hybrid materials offer improved biocompatibility, mechanical matching with spinal tissue, and enhanced cellular adhesion and guidance cues for axonal growth. The synergistic integration of these components enables the fabrication of multifunctional scaffolds capable of supporting stem cell differentiation and neurotrophic factor delivery. By critically summarizing the key parameters influencing scaffold performance, such as microarchitecture, surface modification, and mechanical compliance, this work outlines a framework for developing next-generation 3D nanocomposite scaffolds for SCI regeneration. The proposed approach highlights how GO/PLGA–PEG/HA systems can bridge the gap between experimental tissue engineering and clinically translatable neuroregenerative therapies.en_US
dc.language.isoengen_US
dc.publisherSpringeren_US
dc.relation.isversionof10.1007/s10439-025-03908-7en_US
dc.rightsinfo:eu-repo/semantics/embargoedAccessen_US
dc.subjectSpinal Cord Injuryen_US
dc.subjectAxonal Regenerationen_US
dc.subjectScaffolden_US
dc.subjectTissue Engineeringen_US
dc.subjectGraphene Oxideen_US
dc.subjectSynthetic Polymersen_US
dc.subjectHydroxyapatiteen_US
dc.titleFunctional Bioink and 3D Bioprinting Tissue Scaffold Applications for Spinal Cord Injuryen_US
dc.typearticleen_US
dc.relation.journalAnnals of Biomedical Engineeringen_US
dc.contributor.departmentFSM Vakıf Üniversitesi, Mühendislik Fakültesi, Biyomedikal Mühendisliği Bölümüen_US
dc.contributor.authorIDhttps://orcid.org/0000-0002-3062-2404en_US
dc.identifier.startpage1en_US
dc.identifier.endpage28en_US
dc.relation.publicationcategoryMakale - Ulusal Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.contributor.institutionauthorYücer, Şeydanur
dc.contributor.institutionauthorSaraç, Begüm
dc.contributor.institutionauthorÇiftçi, Fatih


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster