Abelian Modules

Yükleniyor...
Küçük Resim

Tarih

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Faculty of Mathematics, Physics and Informatics Comenius University

Erişim Hakkı

info:eu-repo/semantics/openAccess

Özet

In this note, we introduce abelian modules as a generalization of abelian rings. Let R be an arbitrary ring with identity. A module M is called abelian if, for any m 2 M and any a 2 R, any idempotent e 2 R, mae = mea. We prove that every reduced module, every symmetric module, every semicommutative module and every Armendariz module is abelian. For an abelian ring R, we show that the module MR is abelian iff M[x]R[x] is abelian. We produce an example to show that M[x, ] need not be abelian for an abelian module M and an endomorphism of the ring R. We also prove that if the module M is abelian, then M is p.p.-module iff M[x] is p.p.-module, M is Baer module iff M[x] is Baer module, M is p.q.-Baer module iff M[x] is p.q.-Baer module.

Açıklama

Anahtar Kelimeler

Kaynak

WoS Q Değeri

Scopus Q Değeri

Cilt

Sayı

Künye

AGAYEV, Nazım, Gonca GÜNGÖROĞLU, & Abdullah HARMANCI, & Sait HALICIOĞLU. "Abelian Modules." Acta Mathematica Universitatis Comenianae, 2 (2009): 235-244.

Onay

İnceleme

Ekleyen

Referans Veren