The Temperature-Dependent Tight Binding Theory Modelling of Strain and Composition Effects on the Electronic Structure of CdSe- and ZnSe-Based Core/Shell Quantum Dots

dc.contributor.authorMalkoç, Derya
dc.contributor.authorÜnlü, Hilmi
dc.date.accessioned2025-01-31T08:23:52Z
dc.date.available2025-01-31T08:23:52Z
dc.date.issued2025en_US
dc.departmentFSM Vakıf Üniversitesi, Mühendislik Fakültesi, Elektrik-Elektronik Mühendisliği Bölümüen_US
dc.description.abstractWe propose a temperature-dependent optimization procedure for the secondnearest neighbor (2NN) sp3s* tight-binding (TB) theory parameters to calculate the effects of strain, structure dimensions, and alloy composition on the band structure of heterostructure spherical core/shell quantum dots (QDs). We integrate the thermoelastic theory of solids with the 2NN sp3s* TB theory to calculate the strain, core and shell dimensions, and composition effects on the band structure of binary/ternary CdSe/Cd(Zn)S and ZnSe/Zn(Cd)S QDs at any temperature. We show that the 2NN sp3s* TB theory with optimized parameters greatly improves the prediction of the energy dispersion curve at and in the vicinity of L and X symmetry points. We further used the optimized 2NN sp3s* TB parameters to calculate the strain, core and shell dimensions, and composition effects on the nanocrystal bandgaps of binary/ternary CdSe/Cd(Zn)S and ZnSe/Zn(Cd)S core/shell QDs. We conclude that the 2NN sp3s* TB theory provides remarkable agreement with the measured nanocrystal bandgaps of CdSe/Cd(Zn)S and ZnSe/Zn(Cd)S QDs and accurately reproduces the energy dispersion curves of the electronic band structure at any temperature. We believe that the proposed optimization procedure makes the 2NN sp3s* TB theory reliable and accurate in the modeling of core/shell QDs for nanoscale devices.en_US
dc.identifier.citationMALKOÇ, Derya & Hilmi ÜNLÜ. "The Temperature-Dependent Tight Binding Theory Modelling of Strain and Composition Effects on the Electronic Structure of CdSe- and ZnSe-Based Core/Shell Quantum Dots". Materials, 18.2 (2025): 1-17.en_US
dc.identifier.doi10.3390/ma18020283
dc.identifier.endpage17en_US
dc.identifier.issue2en_US
dc.identifier.scopus2-s2.0-85215823382
dc.identifier.scopusqualityQ1
dc.identifier.startpage1en_US
dc.identifier.urihttps://www.mdpi.com/1996-1944/18/2/283
dc.identifier.urihttps://hdl.handle.net/11352/5168
dc.identifier.volume18en_US
dc.indekslendigikaynakScopus
dc.institutionauthorMalkoç, Derya
dc.institutionauthorÜnlü, Hilmi
dc.language.isoen
dc.publisherMultidisciplinary Digital Publishing Institute (MDPI)en_US
dc.relation.ispartofMaterials
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subject2NN sp3s* and sp3 tight-binding theoriesen_US
dc.subjectk·p effective mass approximationen_US
dc.subjectNanocrystal band gapen_US
dc.subjectCdSe/Cd(Zn)S and ZnSe/Zn(Cd)S core/shell quantum dotsen_US
dc.titleThe Temperature-Dependent Tight Binding Theory Modelling of Strain and Composition Effects on the Electronic Structure of CdSe- and ZnSe-Based Core/Shell Quantum Dotsen_US
dc.typeArticle

Dosyalar

Orijinal paket

Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
Malkoç.pdf
Boyut:
4.42 MB
Biçim:
Adobe Portable Document Format
Açıklama:
Ana Makale

Lisans paketi

Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
license.txt
Boyut:
1.44 KB
Biçim:
Item-specific license agreed upon to submission
Açıklama: