Predicting Code Modifications using BERT Model and Code Histories

dc.contributor.authorAşık, Hüdayi
dc.contributor.authorİslamoğlu, Ertuğrul
dc.contributor.authorNizam, Ali
dc.date.accessioned2025-01-10T10:33:13Z
dc.date.available2025-01-10T10:33:13Z
dc.date.issued2024en_US
dc.departmentFSM Vakıf Üniversitesien_US
dc.description.abstractThe use of deep learning-based techniques has emerged in various code analysis tasks. One of the most important tasks for refactoring and vulnerability detection is to identify points in the code that are likely to change. This study aims to develop a deep learning-based system for code modification detection. A pre-trained BERT model and recurrent neural networks were used to detect the type of code modification. We created an experimental dataset by collecting code from open-source GitHub repositories. The proposed system achieves an average accuracy of about 87%, and the use of history information increases the accuracy by 1.5 points. These results suggest that the BERT model can improve the accuracy of code modification detection by using code history information. Thus, DNN techniques can guide developers through detecting software code changes.en_US
dc.identifier.citationAŞIK, Hüdayi, Ertuğrul İSLAMOĞLU & Ali NİZAM. "Predicting Code Modifications using BERT Model and Code Histories." 2024 Innovations in Intelligent Systems and Applications Conference, ASYU 2024 (2024): 1-4.en_US
dc.identifier.doi10.1109/ASYU62119.2024.10757077
dc.identifier.endpage4en_US
dc.identifier.scopus2-s2.0-85213402954
dc.identifier.scopusqualityN/A
dc.identifier.startpage1en_US
dc.identifier.urihttps://hdl.handle.net/11352/5157
dc.indekslendigikaynakScopus
dc.institutionauthorAşık, Hüdayi
dc.institutionauthorİslamoğlu, Ertuğrul
dc.institutionauthorNizam, Ali
dc.language.isoen
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartof2024 Innovations in Intelligent Systems and Applications Conference, ASYU 2024
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/embargoedAccessen_US
dc.subjectCode modificationen_US
dc.subjectPre-trained modelen_US
dc.subjectBERTen_US
dc.subjectRefactoringen_US
dc.titlePredicting Code Modifications using BERT Model and Code Historiesen_US
dc.typeConference Object

Dosyalar

Orijinal paket

Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
Aşık.pdf
Boyut:
293.72 KB
Biçim:
Adobe Portable Document Format
Açıklama:
Ana Makale

Lisans paketi

Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
license.txt
Boyut:
1.44 KB
Biçim:
Item-specific license agreed upon to submission
Açıklama: