On Semicommutative Modules and Rings
Yükleniyor...
Dosyalar
Tarih
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Department of Mathematics at Kyungpook National University
Erişim Hakkı
info:eu-repo/semantics/openAccess
Özet
We say a module MR a semicommutative module if for any m 2 M and any a 2 R, ma = 0 implies mRa = 0. This paper gives various properties of reduced, Armendariz, Baer, Quasi-Baer, p:p: and p:q:-Baer rings to extend to modules. In addition we also prove, for a p.p.-ring R, R is semicommutative iff R is Armendariz. Let R be an abelian ring and MR be a p:p:-module, then MR is a semicommutative module iff MR is an Armendariz module. For any ring R, R is semicommutative iff A(R; ®) is semicommutative. Let R be a reduced ring, it is shown that for number n ¸ 4 and k = [n=2]; Tk n (R) is semicommutative ring but Tk¡1 n (R) is not.
Açıklama
Anahtar Kelimeler
Kaynak
WoS Q Değeri
Scopus Q Değeri
Cilt
Sayı
Künye
AGAYEV, Nazım, & Abdullah HARMANCI. "On Semicommutative Modules and Rings." Kyungpook Mathematical Journal, 47 (2007): 21-30.










