What to predict from Twitter Data?

dc.contributor.authorSalemdeeb, Mohammed
dc.contributor.authorSahmoud, Shaaban
dc.date.accessioned2023-11-10T09:13:20Z
dc.date.available2023-11-10T09:13:20Z
dc.date.issued2023en_US
dc.departmentFSM Vakıf Üniversitesi, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümüen_US
dc.description.abstractIn the last decade, Twitter data has become one of the most valuable research sources for many areas including health, marketing, security, and politics. Researchers prefer Twitter data since it is completely public and can be easily downloaded using Twitter APIs. The recent intensive use of Twitter data makes it difficult for researchers to follow or analyze its research. In this paper, we summarize most of the predictable patterns, aspects, and attitudes from Twitter data and analyze the performance and feasibility of the algorithms used. Moreover, we describe the current popular Twitter datasets used in various domains and applications. Current challenges and research gaps are discussed, and some recommendations are given for future works from different perspectives.en_US
dc.identifier.citationSALEMDEEB, Mohammed & Shaaban SAHMOUD. "What to predict from Twitter Data?". 2023 3rd International Conference on Computing and Information Technology (ICCIT), (2023).en_US
dc.identifier.doi10.1109/ICCIT58132.2023.10273883
dc.identifier.orcidhttps://orcid.org/0000-0002-2913-7671en_US
dc.identifier.orcidhttps://orcid.org/0000-0003-0148-2382en_US
dc.identifier.scopus2-s2.0-85175464899
dc.identifier.scopusqualityN/A
dc.identifier.urihttps://hdl.handle.net/11352/4672
dc.indekslendigikaynakScopus
dc.institutionauthorSahmoud, Shaaban
dc.language.isoen
dc.publisherIEEEen_US
dc.relation.ispartof2023 3rd International Conference on Computing and Information Technology (ICCIT)
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/embargoedAccessen_US
dc.subjectTwitteren_US
dc.subjectPrediction from Twitteren_US
dc.subjectTwitter Data Analysisen_US
dc.subjectTwitter Datasetsen_US
dc.subjectPredictive Analyticsen_US
dc.titleWhat to predict from Twitter Data?en_US
dc.typeConference Object

Dosyalar

Orijinal paket

Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
SALEMDEEB.pdf
Boyut:
3.37 MB
Biçim:
Adobe Portable Document Format
Açıklama:
Konferans Öğesi

Lisans paketi

Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
license.txt
Boyut:
1.44 KB
Biçim:
Item-specific license agreed upon to submission
Açıklama: