Evaluation of a New Heart Beat Classification Method Based on ABC Algorithm, Comparison with GA, PSO and ACO Classifiers

dc.contributor.authorDilmaç, Selim
dc.contributor.authorNizam, Ali
dc.contributor.authorKorürek, Mehmet
dc.date.accessioned2021-05-18T10:05:40Z
dc.date.available2021-05-18T10:05:40Z
dc.date.issued2014en_US
dc.departmentFSM Vakıf Üniversitesi, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümüen_US
dc.description.abstractIn this paper, we proposed a new method modified artificial bee colony (MABC) algorithm and it is applied to ECG signal analysis for heart beat classification. MITBIH database ECG data is used. In this dataset, MABC algorithm can reach high classification success rate, even with the low values of colony size and other control parameters such as MCN and limit. The classification success rate result of MABC is compared with results of three other classifiers: GA, PSO and ACO. In classification problem, choosing distinctive features has important effect to get a high classification success rate. By using the right features on analysed dataset, high system classification success rate (98.73%) is achieved by MABC, similar to other compared classifiers. MABC and ACO has high sensitivity for all beat types while GA and PSO have lower classification success rates for some beat types.en_US
dc.identifier.citationDİLMAÇ, Selim, Ali NİZAM & Mehmet KORÜREK. "Evaluation of a New Heart Beat Classification Method Based on ABC Algorithm, Comparison with GA, PSO and ACO Classifiers". International Journal of Reasoning-based Intelligent Systems, 6.3/4 (2014): 98-108.en_US
dc.identifier.endpage108en_US
dc.identifier.issn1755-0556
dc.identifier.issue3/4en_US
dc.identifier.scopus2-s2.0-84918592130
dc.identifier.scopusqualityQ3
dc.identifier.startpage98en_US
dc.identifier.urihttps://hdl.handle.net/11352/3535
dc.identifier.volume6en_US
dc.indekslendigikaynakScopus
dc.institutionauthorNizam, Ali
dc.language.isoen
dc.publisherInderscience Enterprisesen_US
dc.relation.ispartofInternational Journal of Reasoning-based Intelligent Systems
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/embargoedAccessen_US
dc.subjectModified Artificial Bee Colonyen_US
dc.subjectMABCen_US
dc.subjectData Clusteringen_US
dc.subjectECG Arrhythmiaen_US
dc.subjectHeart Beat Classificationen_US
dc.subjectSwarm Intelligenceen_US
dc.subjectAnt Colony Optimisationen_US
dc.subjectACOen_US
dc.titleEvaluation of a New Heart Beat Classification Method Based on ABC Algorithm, Comparison with GA, PSO and ACO Classifiersen_US
dc.typeArticle

Dosyalar

Orijinal paket

Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
Dilmaç.pdf
Boyut:
637.09 KB
Biçim:
Adobe Portable Document Format
Açıklama:
Ana makale

Lisans paketi

Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
license.txt
Boyut:
1.44 KB
Biçim:
Item-specific license agreed upon to submission
Açıklama: