Endo-principally Projective Modules

Yükleniyor...
Küçük Resim

Tarih

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Institute of Mathematics, Faculty of Science, University of Novi Sad

Erişim Hakkı

info:eu-repo/semantics/openAccess

Özet

Let R be an arbitrary ring with identity and M a right R-module with S = EndR(M). In this paper, we introduce a class of modules that is a generalization of principally projective (or simply p.p.) rings and Baer modules. The module M is called endo-principally pro- jective (or simply endo-p.p.) if for any m 2 M, lS(m) = Se for some e2 = e 2 S. For an endo-p.p. module M, we prove that M is endo- rigid (resp., endo-reduced, endo-symmetric, endo-semicommutative) if and only if the endomorphism ring S is rigid (resp., reduced, symmetric, semicommutative), and we also prove that the module M is endo-rigid if and only if M is endo-reduced if and only if M is endo-symmetric if and only if M is endo-semicommutative if and only if M is abelian. Among others we show that if M is abelian, then every direct summand of an endo-p.p. module is also endo-p.p. AMS Mathematics Subject Classi cation (2010): 13C99, 16D80, 16U80. Key words and phrases: Baer modules, quasi-Baer modules, endo-princi- pally quasi-Baer modules, endo-p.p. modules, endo-symmetric modules, endo-reduced modules, endo-rigid modules, endo-semicommutative mod- ules, abelian modules.

Açıklama

Anahtar Kelimeler

Kaynak

WoS Q Değeri

Scopus Q Değeri

Cilt

Sayı

Künye

ÜNGÖR, Burcu, Nazım AGAYEV, & Sait HALICIOĞLU, & Abdullah HARMANCI. "Endo-principally projective modules." Novi Sad Journal of Mathematics, 43-1 (2013): 41-49.

Onay

İnceleme

Ekleyen

Referans Veren