Medikal Metin Ayrıştırma ve Sınıflandırma: Semptomdan Hastane Branşına
Dosyalar
Tarih
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Erişim Hakkı
Özet
Bu çalışma hastane yönetim sistemlerinde yer alan hekimler tarafından girilmiş hastalara ait eski kayıtları referans alarak hastaların şikayetleriyle ilgilenebilecek hastane branşını makine öğrenmesi yöntemleriyle tespit etmeyi kapsamaktadır. Fakat sınıflandırmadan önce karşımıza çıkan ilk zorluk Türkçe medikal metin verisi üzerinde çalışıyor olmaktır. Türkçe’ nin sondan eklemeli bir dil oması ve kendine özgü dil bilgisi kurallarının olması klasik metin ayrıştırma yöntemlerini kullanmaya engel olmaktadır. Bu nedenle sınıflandırma performansını artırmak için Türkçe medikal kelime veya kelime gruplarını ayrıştıran ve semantik olarak anlamladıran bir Türkçe doğal dil işleme servisi geliştirilmiştir. Bu servis üzerinde işlenip anlamlandırılan medikal metin verileri karar destek makinesi ve Bayesian makine öğrenmesi algoritmaları kullanılarak sınıflandırılmış ve yapılan testler sonucu en yüksek doğruluk oranı %97.7 olarak hesaplanmıştır. Ayrıca bu medikal Türkçe doğal dil işleme ve sınıflandırma çalışması paketlenerek herhangi bir sistem veya web ortamına entegre olabilecek şekilde servis olarak yayınlanmıştır. Böyle bir servisin hastane randevu süreçlerinde kullanılmasıyla, hastaların şikayetleriyle örtüşen daha doğru ve özelleşmiş bir hastane branşına yönlendirilmesi hedeflenmiştir.










