On a Class of Semicommutative Modules
Künye
AGAYEV, Nazım, & Tahire ÖZEN & Abdullah HARMANCI. "On a class of semicommutative modules." Proceedings - Mathematical Sciences, 119/2 (2009): 149-158.Özet
Let R be a ring with identity,M a right R-module and S = EndR(M). In this
note, we introduce S-semicommutative, S-Baer, S-q.-Baer and S-p.q.-Baer modules.
We study the relations between these classes of modules. Also we prove if M is an
S-semicommutative module, then M is an S-p.q.-Baer module if and only if M[x] is
an S[x]-p.q.-Baer module, M is an S-Baer module if and only if M[x] is an S[x]-Baer
module, M is an S-q.-Baer module if and only if M[x] is an S[x]-q.-Baer module.
Bağlantı
http://www.ias.ac.in/mathsci/vol119/apr2009/PM-07-00184.PDFhttps://hdl.handle.net/11352/1985
Koleksiyonlar
İlgili Öğeler
Başlık, yazar, küratör ve konuya göre gösterilen ilgili öğeler.
-
Endo-principally Projective Modules
Üngör, Burcu; Agayev, Nazım; Halıcıoğlu, Sait; Harmancı, Abdullah (Institute of Mathematics, Faculty of Science, University of Novi Sad, 2013)Let R be an arbitrary ring with identity and M a right R-module with S = EndR(M). In this paper, we introduce a class of modules that is a generalization of principally projective (or simply p.p.) rings and Baer modules. ... -
Abelian Modules
Agayev, Nazım; Harmancı, Abdullah; Halıcıoğlu, Sait; Güngöroğlu, Gonca (Faculty of Mathematics, Physics and Informatics Comenius University, 2009)In this note, we introduce abelian modules as a generalization of abelian rings. Let R be an arbitrary ring with identity. A module M is called abelian if, for any m 2 M and any a 2 R, any idempotent e 2 R, mae = mea. ... -
On Symmetric Modules
Agayev, Nazım; Halıcıoğlu, Sait; Harmancı, Abdullah (Rivista di Matematica della Università di Parma, 2009)[No Abstract Available]