dc.contributor.author | Agayev, Nazım | |
dc.contributor.author | Özen, Tahire | |
dc.contributor.author | Harmancı, Abdullah | |
dc.date.accessioned | 2014-07-14T12:57:39Z | |
dc.date.available | 2014-07-14T12:57:39Z | |
dc.date.issued | 2009 | |
dc.identifier.citation | AGAYEV, Nazım, & Tahire ÖZEN & Abdullah HARMANCI. "On a class of semicommutative modules." Proceedings - Mathematical Sciences, 119/2 (2009): 149-158. | en_US |
dc.identifier.uri | http://www.ias.ac.in/mathsci/vol119/apr2009/PM-07-00184.PDF | |
dc.identifier.uri | https://hdl.handle.net/11352/1985 | |
dc.description.abstract | Let R be a ring with identity,M a right R-module and S = EndR(M). In this
note, we introduce S-semicommutative, S-Baer, S-q.-Baer and S-p.q.-Baer modules.
We study the relations between these classes of modules. Also we prove if M is an
S-semicommutative module, then M is an S-p.q.-Baer module if and only if M[x] is
an S[x]-p.q.-Baer module, M is an S-Baer module if and only if M[x] is an S[x]-Baer
module, M is an S-q.-Baer module if and only if M[x] is an S[x]-q.-Baer module. | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Springer | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Baer modules | en_US |
dc.subject | Principally quasi-Baer modules | en_US |
dc.subject | Quasi-Baer modules | en_US |
dc.subject | Semicommutative modules | en_US |
dc.title | On a Class of Semicommutative Modules | en_US |
dc.type | article | en_US |
dc.relation.publicationcategory | [0-Belirlenecek] | en_US |
dc.contributor.institutionauthor | [0-Belirlenecek] | |