• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   FSM Vakıf
  • Fakülteler / Faculties
  • Mühendislik Fakültesi / Faculty of Engineering
  • Elektrik-Elektronik Mühendisliği Bölümü
  • View Item
  •   FSM Vakıf
  • Fakülteler / Faculties
  • Mühendislik Fakültesi / Faculty of Engineering
  • Elektrik-Elektronik Mühendisliği Bölümü
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Modules Which are Reduced Over Their Endomorphism Rings

Thumbnail

View/Open

Ana Makale (203.3Kb)

Access

info:eu-repo/semantics/embargoedAccess

Date

2015

Author

Aghayev, Nazım
Halıcıoğlu, Sait
Harmancı, Abdullah
Üngör, Burcu

Metadata

Show full item record

Citation

AGHAYEV, Nazım, Sait HALICIOĞLU, Abdullah HARMANCI & Burcu ÜNGÖR. "Modules Which are Reduced Over Their Endomorphism Rings". Thai Journal of Mathematics, 13.1 (2015): 177-188.

Abstract

Let R be an arbitrary ring with identity and M a right R-module with S = EndR(M). The module M is called reduced if for any m ∈ M and f ∈ S, fm = 0 implies fM ∩ Sm = 0. In this paper, we investigate properties of reduced modules and rigid modules.

Source

Thai Journal of Mathematics

Volume

13

Issue

1

URI

https://hdl.handle.net/11352/3407

Collections

  • Elektrik-Elektronik Mühendisliği Bölümü [75]
  • Scopus İndeksli Yayınlar / Scopus Indexed Publications [756]
  • WOS İndeksli Yayınlar / WOS Indexed Publications [661]

Related items

Showing items related by title, author, creator and subject.

  • Endo-principally Projective Modules 

    Üngör, Burcu; Agayev, Nazım; Halıcıoğlu, Sait; Harmancı, Abdullah (Institute of Mathematics, Faculty of Science, University of Novi Sad, 2013)
    Let R be an arbitrary ring with identity and M a right R-module with S = EndR(M). In this paper, we introduce a class of modules that is a generalization of principally projective (or simply p.p.) rings and Baer modules. ...
  • Abelian Modules 

    Agayev, Nazım; Harmancı, Abdullah; Halıcıoğlu, Sait; Güngöroğlu, Gonca (Faculty of Mathematics, Physics and Informatics Comenius University, 2009)
    In this note, we introduce abelian modules as a generalization of abelian rings. Let R be an arbitrary ring with identity. A module M is called abelian if, for any m 2 M and any a 2 R, any idempotent e 2 R, mae = mea. ...
  • On Symmetric Modules 

    Agayev, Nazım; Halıcıoğlu, Sait; Harmancı, Abdullah (Rivista di Matematica della Università di Parma, 2009)
    [No Abstract Available]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Policy | Guide | Contact |

DSpace@FSM

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Policy || Guide || Library || FSM Vakıf University || OAI-PMH ||

FSM Vakıf University, İstanbul, Turkey
If you find any errors in content, please contact:

Creative Commons License
FSM Vakıf University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@FSM:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.