• Türkçe
    • English
  • Türkçe 
    • Türkçe
    • English
  • Giriş
Öğe Göster 
  •   DSpace@FSM Vakıf
  • Fakülteler / Faculties
  • Mühendislik Fakültesi / Faculty of Engineering
  • Bilgisayar Mühendisliği Bölümü
  • Öğe Göster
  •   DSpace@FSM Vakıf
  • Fakülteler / Faculties
  • Mühendislik Fakültesi / Faculty of Engineering
  • Bilgisayar Mühendisliği Bölümü
  • Öğe Göster
JavaScript is disabled for your browser. Some features of this site may not work without it.

Experimental Analysis of A Statistical Multiploid Genetic Algorithm for Dynamic Environments

Thumbnail

Göster/Aç

Ana Makale (1.492Mb)

Erişim

info:eu-repo/semantics/openAccess

Tarih

2022

Yazar

Gazioğlu, Emrullah
Uyar, A. Sima Ataner

Üst veri

Tüm öğe kaydını göster

Künye

GAZİOĞLU Emrullah & A.Sima ETANER-UYAR. "Experimental Analysis of A Statistical Multiploid Genetic Algorithm for Dynamic Environments". Engineering Science and Technology, an International Journal, (2022): 2-8.

Özet

Dynamic environments are still a big challenge for optimization algorithms. In this paper, a Genetic Algorithm using both Multiploid representation and the Bayesian Decision method is proposed. By Multiploid representation, an implicit memory scheme is introduced to transfer useful information to the next generations. In this representation, there are more than one genotypes and only one phenotype. The phenotype values are determined based on the corresponding genotypes values. To determine phenotype values, the well-known Bayesian Optimization Algorithm (BOA) has been injected into our algorithm to create a Bayes Network by using the previous population to exploit interactions between variables. With this algorithm, we have solved the well-known Dynamic Knapsack Problem (DKP) with 100, 250, and 500 items. Also, we have compared our algorithm with the most recent algorithm in the literature by using the DKP with 100 items. Experiments have shown that the proposed algorithm is efficient and faster than the peer algorithms in the manner of tracking moving optima without using an explicit memory scheme. In conclusion, using relationships between variables within the optimization algorithms is useful when concerning dynamic environments

Kaynak

Engineering Science and Technology, an International Journal

Bağlantı

https://www.sciencedirect.com/science/article/pii/S2215098622000817?via%3Dihub
https://hdl.handle.net/11352/4128

Koleksiyonlar

  • Bilgisayar Mühendisliği Bölümü [214]
  • Scopus İndeksli Yayınlar / Scopus Indexed Publications [756]
  • WOS İndeksli Yayınlar / WOS Indexed Publications [661]



DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 




| Politika | Rehber | İletişim |

DSpace@FSM

by OpenAIRE
Gelişmiş Arama

sherpa/romeo

Göz at

Tüm DSpaceBölümler & KoleksiyonlarTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreDile GöreBölüme GöreKategoriye GöreYayıncıya GöreErişim ŞekliKurum Yazarına GöreBu KoleksiyonTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreDile GöreBölüme GöreKategoriye GöreYayıncıya GöreErişim ŞekliKurum Yazarına Göre

Hesabım

GirişKayıt

İstatistikler

Google Analitik İstatistiklerini Görüntüle

DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 


|| Politika || Rehber || Kütüphane || FSM Vakıf Üniversitesi || OAI-PMH ||

FSM Vakıf Üniversitesi, İstanbul, Türkiye
İçerikte herhangi bir hata görürseniz, lütfen bildiriniz:

Creative Commons License
FSM Vakıf Üniversitesi Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@FSM:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.