Basit öğe kaydını göster

dc.contributor.authorGazioğlu, Emrullah
dc.contributor.authorUyar, A. Sima Ataner
dc.date.accessioned2022-07-22T14:04:47Z
dc.date.available2022-07-22T14:04:47Z
dc.date.issued2022en_US
dc.identifier.citationGAZİOĞLU Emrullah & A.Sima ETANER-UYAR. "Experimental Analysis of A Statistical Multiploid Genetic Algorithm for Dynamic Environments". Engineering Science and Technology, an International Journal, (2022): 2-8.en_US
dc.identifier.urihttps://www.sciencedirect.com/science/article/pii/S2215098622000817?via%3Dihub
dc.identifier.urihttps://hdl.handle.net/11352/4128
dc.description.abstractDynamic environments are still a big challenge for optimization algorithms. In this paper, a Genetic Algorithm using both Multiploid representation and the Bayesian Decision method is proposed. By Multiploid representation, an implicit memory scheme is introduced to transfer useful information to the next generations. In this representation, there are more than one genotypes and only one phenotype. The phenotype values are determined based on the corresponding genotypes values. To determine phenotype values, the well-known Bayesian Optimization Algorithm (BOA) has been injected into our algorithm to create a Bayes Network by using the previous population to exploit interactions between variables. With this algorithm, we have solved the well-known Dynamic Knapsack Problem (DKP) with 100, 250, and 500 items. Also, we have compared our algorithm with the most recent algorithm in the literature by using the DKP with 100 items. Experiments have shown that the proposed algorithm is efficient and faster than the peer algorithms in the manner of tracking moving optima without using an explicit memory scheme. In conclusion, using relationships between variables within the optimization algorithms is useful when concerning dynamic environmentsen_US
dc.language.isoengen_US
dc.publisherElsevieren_US
dc.relation.isversionof10.1016/j.jestch.2022.101173en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectOptimizationen_US
dc.subjectGenetic Algorithmen_US
dc.subjectEvolutionary Computationen_US
dc.subjectDynamic Environmentsen_US
dc.subjectEstimation of Distribution Algorithmsen_US
dc.subjectBayesian Optimization Algorithmen_US
dc.titleExperimental Analysis of A Statistical Multiploid Genetic Algorithm for Dynamic Environmentsen_US
dc.typearticleen_US
dc.relation.journalEngineering Science and Technology, an International Journalen_US
dc.contributor.departmentFSM Vakıf Üniversitesi, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümüen_US
dc.identifier.startpage2en_US
dc.identifier.endpage8en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.contributor.institutionauthorUyar, A. Sima Ataner


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster