Basit öğe kaydını göster

dc.contributor.authorKuş, Zeki
dc.contributor.authorKiraz, Berna
dc.contributor.authorGöksu, Tuğçe Koçak
dc.contributor.authorAydın, Musa
dc.contributor.authorÖzkan, Esra
dc.contributor.authorVural, Atay
dc.contributor.authorKiraz, Alper
dc.contributor.authorCan, Burhanettin
dc.date.accessioned2024-02-02T14:13:19Z
dc.date.available2024-02-02T14:13:19Z
dc.date.issued2024en_US
dc.identifier.citationKUŞ, Zeki, Berna KİRAZ, Tuğçe Koçak GÖKSU, Musa AYDIN, Esra ÖZKAN, Atay VURAL, Alper KİRAZ & Burhanettin CAN. "Differential evolution-based neural architecture search for brain vessel segmentation". Engineering Science and Technology, an International Journal, 46 (2024): 1-13.en_US
dc.identifier.urihttps://www.sciencedirect.com/science/article/pii/S2215098623001805
dc.identifier.urihttps://hdl.handle.net/11352/4719
dc.description.abstractBrain vasculature analysis is critical in developing novel treatment targets for neurodegenerative diseases. Such an accurate analysis cannot be performed manually but requires a semi-automated or fully-automated approach. Deep learning methods have recently proven indispensable for the automated segmentation and analysis of medical images. However, optimizing a deep learning network architecture is another challenge. Manually selecting deep learning network architectures and tuning their hyper-parameters requires a lot of expertise and effort. To solve this problem, neural architecture search (NAS) approaches that explore more efficient network architectures with high segmentation performance have been proposed in the literature. This study introduces differential evolution-based NAS approaches in which a novel search space is proposed for brain vessel segmentation. We select two architectures that are frequently used for medical image segmentation, i.e. U-Net and Attention U-Net, as baselines for NAS optimizations. The conventional differential evolution and the opposition-based differential evolution with novel search space are employed as search methods in NAS. Furthermore, we perform ablation studies and evaluate the effects of specific loss functions, model pruning, threshold selection and generalization performance on the proposed models. The experiments are conducted on two datasets providing 335 single-channel 8-bit gray-scale images. These datasets are a public volumetric cerebrovascular system dataset (vesseINN) and our own dataset called KUVESG. The proposed NAS approaches, namely UNAS-Net and Attention UNAS-Net architectures, yield better segmentation performance in terms of different segmentation metrics. More specifically, UNAS-Net with differential evolution reveals high dice score/sensitivity values of 79.57/81.48, respectively. Moreover, they provide shorter inference times by a factor of 9.15 than the baseline methods.en_US
dc.language.isoengen_US
dc.publisherElsevieren_US
dc.relation.isversionof10.1016/j.jestch.2023.101502en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectAttention U-Neten_US
dc.subjectBrain Vessel Segmentationen_US
dc.subjectDifferential Evolutionen_US
dc.subjectNeural Architecture Searchen_US
dc.subjectU-Neten_US
dc.titleDifferential Evolution-Based Neural Architecture Search for Brain Vessel Segmentationen_US
dc.typearticleen_US
dc.relation.journalEngineering Science and Technology, an International Journalen_US
dc.contributor.departmentFSM Vakıf Üniversitesi, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümüen_US
dc.contributor.authorIDhttps://orcid.org/0000-0001-8762-7233en_US
dc.contributor.authorIDhttps://orcid.org/0000-0002-8428-3217en_US
dc.contributor.authorIDhttps://orcid.org/0000-0003-2250-2485en_US
dc.contributor.authorIDhttps://orcid.org/0000-0002-5825-2230en_US
dc.contributor.authorIDhttps://orcid.org/0000-0003-3222-874Xen_US
dc.contributor.authorIDhttps://orcid.org/0000-0001-7977-1286en_US
dc.contributor.authorIDhttps://orcid.org/0000-0003-2801-9726en_US
dc.identifier.volume46en_US
dc.identifier.startpage1en_US
dc.identifier.endpage13en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.contributor.institutionauthorKuş, Zeki
dc.contributor.institutionauthorKiraz, Berna
dc.contributor.institutionauthorGöksu, Tuğçe Koçak
dc.contributor.institutionauthorAydın, Musa
dc.contributor.institutionauthorCan, Burhanettin


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster