• Türkçe
    • English
  • Türkçe 
    • Türkçe
    • English
  • Giriş
Öğe Göster 
  •   DSpace@FSM Vakıf
  • Fakülteler / Faculties
  • Mühendislik Fakültesi / Faculty of Engineering
  • Bilgisayar Mühendisliği Bölümü
  • Öğe Göster
  •   DSpace@FSM Vakıf
  • Fakülteler / Faculties
  • Mühendislik Fakültesi / Faculty of Engineering
  • Bilgisayar Mühendisliği Bölümü
  • Öğe Göster
JavaScript is disabled for your browser. Some features of this site may not work without it.

Enhancing Resolution and Contrast in Fibre Bundle-Based Fluorescence Microscopy Using Generative Adversarial Network

Thumbnail

Göster/Aç

Ana Makale (2.519Mb)

Erişim

info:eu-repo/semantics/embargoedAccess

Tarih

2024

Yazar

Ketabchi, Amir Mohammad
Morova, Berna
Uysallı, Yiğit
Aydın, Musa
Eren, Furkan
Bavili, Nima
Pysz, Dariusz
Buczynski, Ryszard
Kiraz, Alper

Üst veri

Tüm öğe kaydını göster

Künye

KETABCHI, Amir Mohammad, Berna MOROVA, Yiğit UYSALLI, Musa AYDIN, Furkan EREN, Nima BAVİLİ, Dariusz PYSZ, Ryszard BUCZYNSKİ & Alper KİRAZ. "Enhancing Resolution and Contrast in Fibre Bundle-Based Fluorescence Microscopy Using Generative Adversarial Network". Journal of Microscopy, (2024): 1-7.

Özet

Fibre bundle (FB)-based endoscopes are indispensable in biology and medical science due to their minimally invasive nature. However, resolution and contrast for fluorescence imaging are limited due to characteristic features of the FBs, such as low numerical aperture (NA) and individual fibre core sizes. In this study, we improved the resolution and contrast of sample fluorescence images acquired using in-house fabricated high-NA FBs by utilising generative adversarial networks (GANs). In order to train our deep learning model, we built an FB-based multifocal structured illumination microscope (MSIM) based on a digital micromirror device (DMD) which improves the resolution and the contrast substantially compared to basic FB-based fluorescence microscopes. After network training, the GAN model, employing image-to-image translation techniques, effectively transformed wide-field images into high-resolution MSIM images without the need for any additional optical hardware. The results demonstrated that GAN-generated outputs significantly enhanced both contrast and resolution compared to the original wide-field images. These findings highlight the potential of GAN-based models trained using MSIM data to enhance resolution and contrast in wide-field imaging for fibre bundle-based fluorescence microscopy.

Kaynak

Journal of Microscopy

Bağlantı

https://hdl.handle.net/11352/4887

Koleksiyonlar

  • Bilgisayar Mühendisliği Bölümü [198]
  • Scopus İndeksli Yayınlar / Scopus Indexed Publications [630]
  • WOS İndeksli Yayınlar / WOS Indexed Publications [568]



DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 




| Politika | Rehber | İletişim |

DSpace@FSM

by OpenAIRE
Gelişmiş Arama

sherpa/romeo

Göz at

Tüm DSpaceBölümler & KoleksiyonlarTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreDile GöreBölüme GöreKategoriye GöreYayıncıya GöreErişim ŞekliKurum Yazarına GöreBu KoleksiyonTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreDile GöreBölüme GöreKategoriye GöreYayıncıya GöreErişim ŞekliKurum Yazarına Göre

Hesabım

GirişKayıt

İstatistikler

Google Analitik İstatistiklerini Görüntüle

DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 


|| Politika || Rehber || Kütüphane || FSM Vakıf Üniversitesi || OAI-PMH ||

FSM Vakıf Üniversitesi, İstanbul, Türkiye
İçerikte herhangi bir hata görürseniz, lütfen bildiriniz:

Creative Commons License
FSM Vakıf Üniversitesi Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@FSM:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.