Basit öğe kaydını göster

dc.contributor.authorKetabchi, Amir Mohammad
dc.contributor.authorMorova, Berna
dc.contributor.authorUysallı, Yiğit
dc.contributor.authorAydın, Musa
dc.contributor.authorEren, Furkan
dc.contributor.authorBavili, Nima
dc.contributor.authorPysz, Dariusz
dc.contributor.authorBuczynski, Ryszard
dc.contributor.authorKiraz, Alper
dc.date.accessioned2024-04-15T09:02:36Z
dc.date.available2024-04-15T09:02:36Z
dc.date.issued2024en_US
dc.identifier.citationKETABCHI, Amir Mohammad, Berna MOROVA, Yiğit UYSALLI, Musa AYDIN, Furkan EREN, Nima BAVİLİ, Dariusz PYSZ, Ryszard BUCZYNSKİ & Alper KİRAZ. "Enhancing Resolution and Contrast in Fibre Bundle-Based Fluorescence Microscopy Using Generative Adversarial Network". Journal of Microscopy, (2024): 1-7.en_US
dc.identifier.urihttps://hdl.handle.net/11352/4887
dc.description.abstractFibre bundle (FB)-based endoscopes are indispensable in biology and medical science due to their minimally invasive nature. However, resolution and contrast for fluorescence imaging are limited due to characteristic features of the FBs, such as low numerical aperture (NA) and individual fibre core sizes. In this study, we improved the resolution and contrast of sample fluorescence images acquired using in-house fabricated high-NA FBs by utilising generative adversarial networks (GANs). In order to train our deep learning model, we built an FB-based multifocal structured illumination microscope (MSIM) based on a digital micromirror device (DMD) which improves the resolution and the contrast substantially compared to basic FB-based fluorescence microscopes. After network training, the GAN model, employing image-to-image translation techniques, effectively transformed wide-field images into high-resolution MSIM images without the need for any additional optical hardware. The results demonstrated that GAN-generated outputs significantly enhanced both contrast and resolution compared to the original wide-field images. These findings highlight the potential of GAN-based models trained using MSIM data to enhance resolution and contrast in wide-field imaging for fibre bundle-based fluorescence microscopy.en_US
dc.language.isoengen_US
dc.publisherWileyen_US
dc.relation.isversionof10.1111/jmi.13296en_US
dc.rightsinfo:eu-repo/semantics/embargoedAccessen_US
dc.subjectBiological Imagingen_US
dc.subjectDeep Learning Modelen_US
dc.subjectFibre Bundle-Based Fluorescence Microscopyen_US
dc.subjectGANen_US
dc.subjectImage-to-Image Translationen_US
dc.subjectMultifocal Structured Illumination Microscopy (MSIM)en_US
dc.titleEnhancing Resolution and Contrast in Fibre Bundle-Based Fluorescence Microscopy Using Generative Adversarial Networken_US
dc.typearticleen_US
dc.relation.journalJournal of Microscopyen_US
dc.contributor.departmentFSM Vakıf Üniversitesi, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümüen_US
dc.contributor.authorIDhttps://orcid.org/0000-0002-3386-269Xen_US
dc.contributor.authorIDhttps://orcid.org/0000-0003-1293-7362en_US
dc.contributor.authorIDhttps://orcid.org/0000-0003-3369-4769en_US
dc.contributor.authorIDhttps://orcid.org/0000-0002-5825-2230en_US
dc.contributor.authorIDhttps://orcid.org/0000-0002-6770-7073en_US
dc.contributor.authorIDhttps://orcid.org/0000-0003-2855-7508en_US
dc.contributor.authorIDhttps://orcid.org/0000-0003-2863-725Xen_US
dc.identifier.startpage1en_US
dc.identifier.endpage7en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.contributor.institutionauthorAydın, Musa


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster