dc.contributor.author | Ketabchi, Amir Mohammad | |
dc.contributor.author | Morova, Berna | |
dc.contributor.author | Uysallı, Yiğit | |
dc.contributor.author | Aydın, Musa | |
dc.contributor.author | Eren, Furkan | |
dc.contributor.author | Bavili, Nima | |
dc.contributor.author | Pysz, Dariusz | |
dc.contributor.author | Buczynski, Ryszard | |
dc.contributor.author | Kiraz, Alper | |
dc.date.accessioned | 2024-04-15T09:02:36Z | |
dc.date.available | 2024-04-15T09:02:36Z | |
dc.date.issued | 2024 | en_US |
dc.identifier.citation | KETABCHI, Amir Mohammad, Berna MOROVA, Yiğit UYSALLI, Musa AYDIN, Furkan EREN, Nima BAVİLİ, Dariusz PYSZ, Ryszard BUCZYNSKİ & Alper KİRAZ. "Enhancing Resolution and Contrast in Fibre Bundle-Based Fluorescence Microscopy Using Generative Adversarial Network". Journal of Microscopy, (2024): 1-7. | en_US |
dc.identifier.uri | https://hdl.handle.net/11352/4887 | |
dc.description.abstract | Fibre bundle (FB)-based endoscopes are indispensable in biology and medical
science due to their minimally invasive nature. However, resolution and contrast
for fluorescence imaging are limited due to characteristic features of the
FBs, such as low numerical aperture (NA) and individual fibre core sizes. In this
study, we improved the resolution and contrast of sample fluorescence images
acquired using in-house fabricated high-NA FBs by utilising generative adversarial
networks (GANs). In order to train our deep learning model, we built
an FB-based multifocal structured illumination microscope (MSIM) based on a
digital micromirror device (DMD) which improves the resolution and the contrast
substantially compared to basic FB-based fluorescence microscopes. After
network training, the GAN model, employing image-to-image translation techniques,
effectively transformed wide-field images into high-resolution MSIM
images without the need for any additional optical hardware. The results demonstrated
that GAN-generated outputs significantly enhanced both contrast and
resolution compared to the original wide-field images. These findings highlight
the potential of GAN-based models trained using MSIM data to enhance resolution
and contrast in wide-field imaging for fibre bundle-based fluorescence
microscopy. | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Wiley | en_US |
dc.relation.isversionof | 10.1111/jmi.13296 | en_US |
dc.rights | info:eu-repo/semantics/embargoedAccess | en_US |
dc.subject | Biological Imaging | en_US |
dc.subject | Deep Learning Model | en_US |
dc.subject | Fibre Bundle-Based Fluorescence Microscopy | en_US |
dc.subject | GAN | en_US |
dc.subject | Image-to-Image Translation | en_US |
dc.subject | Multifocal Structured Illumination Microscopy (MSIM) | en_US |
dc.title | Enhancing Resolution and Contrast in Fibre Bundle-Based Fluorescence Microscopy Using Generative Adversarial Network | en_US |
dc.type | article | en_US |
dc.relation.journal | Journal of Microscopy | en_US |
dc.contributor.department | FSM Vakıf Üniversitesi, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümü | en_US |
dc.contributor.authorID | https://orcid.org/0000-0002-3386-269X | en_US |
dc.contributor.authorID | https://orcid.org/0000-0003-1293-7362 | en_US |
dc.contributor.authorID | https://orcid.org/0000-0003-3369-4769 | en_US |
dc.contributor.authorID | https://orcid.org/0000-0002-5825-2230 | en_US |
dc.contributor.authorID | https://orcid.org/0000-0002-6770-7073 | en_US |
dc.contributor.authorID | https://orcid.org/0000-0003-2855-7508 | en_US |
dc.contributor.authorID | https://orcid.org/0000-0003-2863-725X | en_US |
dc.identifier.startpage | 1 | en_US |
dc.identifier.endpage | 7 | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.contributor.institutionauthor | Aydın, Musa | |