• Türkçe
    • English
  • Türkçe 
    • Türkçe
    • English
  • Giriş
Öğe Göster 
  •   DSpace@FSM Vakıf
  • Fakülteler / Faculties
  • Mühendislik Fakültesi / Faculty of Engineering
  • Elektrik-Elektronik Mühendisliği Bölümü
  • Öğe Göster
  •   DSpace@FSM Vakıf
  • Fakülteler / Faculties
  • Mühendislik Fakültesi / Faculty of Engineering
  • Elektrik-Elektronik Mühendisliği Bölümü
  • Öğe Göster
JavaScript is disabled for your browser. Some features of this site may not work without it.

Energy Efficiency Assessment in Advanced Driver Assistance Systems with Real‑Time Image Processing on Custom Xilinx DPUs

Thumbnail

Göster/Aç

Ana Makale (2.960Mb)

Erişim

info:eu-repo/semantics/embargoedAccess

Tarih

2024

Yazar

Tatar, Güner
Bayar, Salih

Üst veri

Tüm öğe kaydını göster

Künye

TATAR, Güner & Salih BAYAR. "Energy Efficiency Assessment in Advanced Driver Assistance Systems with Real‑Time Image Processing on Custom Xilinx DPUs". Journal of Real-Time Image Processing, 21 (2024): 1-16.

Özet

The rapid advancement in embedded AI, driven by integrating deep neural networks (DNNs) into embedded systems for real-time image and video processing, has been notably pushed by AI-specific platforms like the AMD Xilinx Vitis AI on the MPSoC-FPGA platform. This platform utilizes a configurable Deep Processing Unit (DPU) for scalable resource utilization and operating frequencies. Our study employed a detailed methodology to assess the impact of various DPU configurations and frequencies on resource utilization and energy consumption. The findings reveal that increasing the DPU frequency enhances resource utilization efficiency and improves performance. Conversely, lower frequencies significantly reduce resource utilization, with only a borderline decrease in performance. These trade-offs are influenced not only by frequency but also by variations in DPU parameters. These findings are critical for developing energy-efficient AI-driven systems in Advanced Driver Assistance Systems (ADAS) based on real-time video processing. By leveraging the capabilities of Xilinx Vitis AI deployed on the Kria KV260 MPSoC platform, we explore the intricacies of optimizing energy efficiency through multi-task learning in real-time ADAS applications.

Kaynak

Journal of Real-Time Image Processing

Cilt

21

Bağlantı

https://hdl.handle.net/11352/4998

Koleksiyonlar

  • Elektrik-Elektronik Mühendisliği Bölümü [67]
  • Scopus İndeksli Yayınlar / Scopus Indexed Publications [630]
  • WOS İndeksli Yayınlar / WOS Indexed Publications [568]



DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 




| Politika | Rehber | İletişim |

DSpace@FSM

by OpenAIRE
Gelişmiş Arama

sherpa/romeo

Göz at

Tüm DSpaceBölümler & KoleksiyonlarTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreDile GöreBölüme GöreKategoriye GöreYayıncıya GöreErişim ŞekliKurum Yazarına GöreBu KoleksiyonTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreDile GöreBölüme GöreKategoriye GöreYayıncıya GöreErişim ŞekliKurum Yazarına Göre

Hesabım

GirişKayıt

İstatistikler

Google Analitik İstatistiklerini Görüntüle

DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 


|| Politika || Rehber || Kütüphane || FSM Vakıf Üniversitesi || OAI-PMH ||

FSM Vakıf Üniversitesi, İstanbul, Türkiye
İçerikte herhangi bir hata görürseniz, lütfen bildiriniz:

Creative Commons License
FSM Vakıf Üniversitesi Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@FSM:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.