Basit öğe kaydını göster

dc.contributor.authorTatar, Güner
dc.contributor.authorBayar, Salih
dc.date.accessioned2024-09-11T11:33:05Z
dc.date.available2024-09-11T11:33:05Z
dc.date.issued2024en_US
dc.identifier.citationTATAR, Güner & Salih BAYAR. "Energy Efficiency Assessment in Advanced Driver Assistance Systems with Real‑Time Image Processing on Custom Xilinx DPUs". Journal of Real-Time Image Processing, 21 (2024): 1-16.en_US
dc.identifier.urihttps://hdl.handle.net/11352/4998
dc.description.abstractThe rapid advancement in embedded AI, driven by integrating deep neural networks (DNNs) into embedded systems for real-time image and video processing, has been notably pushed by AI-specific platforms like the AMD Xilinx Vitis AI on the MPSoC-FPGA platform. This platform utilizes a configurable Deep Processing Unit (DPU) for scalable resource utilization and operating frequencies. Our study employed a detailed methodology to assess the impact of various DPU configurations and frequencies on resource utilization and energy consumption. The findings reveal that increasing the DPU frequency enhances resource utilization efficiency and improves performance. Conversely, lower frequencies significantly reduce resource utilization, with only a borderline decrease in performance. These trade-offs are influenced not only by frequency but also by variations in DPU parameters. These findings are critical for developing energy-efficient AI-driven systems in Advanced Driver Assistance Systems (ADAS) based on real-time video processing. By leveraging the capabilities of Xilinx Vitis AI deployed on the Kria KV260 MPSoC platform, we explore the intricacies of optimizing energy efficiency through multi-task learning in real-time ADAS applications.en_US
dc.language.isoengen_US
dc.publisherSpringeren_US
dc.relation.isversionof10.1007/s11554-024-01538-1en_US
dc.rightsinfo:eu-repo/semantics/embargoedAccessen_US
dc.subjectDeep Learning Processing Uniten_US
dc.subjectMulti-Task Learning Networksen_US
dc.subjectMPSoC-FPGAen_US
dc.subjectHardware Acceleratoren_US
dc.subjectVitis AIen_US
dc.subjectHeterogeneous Computingen_US
dc.titleEnergy Efficiency Assessment in Advanced Driver Assistance Systems with Real‑Time Image Processing on Custom Xilinx DPUsen_US
dc.typearticleen_US
dc.relation.journalJournal of Real-Time Image Processingen_US
dc.contributor.departmentFSM Vakıf Üniversitesi, Mühendislik Fakültesi, Elektrik-Elektronik Mühendisliği Bölümüen_US
dc.contributor.authorIDhttps://orcid.org/0000-0002-3664-1366en_US
dc.contributor.authorIDhttps://orcid.org/0000-0002-4600-1880en_US
dc.identifier.volume21en_US
dc.identifier.startpage1en_US
dc.identifier.endpage16en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.contributor.institutionauthorTatar, Güner


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster