• Türkçe
    • English
  • Türkçe 
    • Türkçe
    • English
  • Giriş
Öğe Göster 
  •   DSpace@FSM Vakıf
  • Fakülteler / Faculties
  • Mühendislik Fakültesi / Faculty of Engineering
  • Bilgisayar Mühendisliği Bölümü
  • Öğe Göster
  •   DSpace@FSM Vakıf
  • Fakülteler / Faculties
  • Mühendislik Fakültesi / Faculty of Engineering
  • Bilgisayar Mühendisliği Bölümü
  • Öğe Göster
JavaScript is disabled for your browser. Some features of this site may not work without it.

L2D2: A Novel LSTM Model for Multi-Class Intrusion Detection Systems in the Era of IoMT

Thumbnail

Göster/Aç

Ana Makale (1.437Mb)

Erişim

info:eu-repo/semantics/openAccess

Tarih

2025

Yazar

Akar, Gökhan
Sahmoud, Shaaban
Onat, Mustafa
Çavuşoğlu, Ünal
Malondo, Emmanuel

Üst veri

Tüm öğe kaydını göster

Künye

AKAR, Gökhan, Shaaban SAHMOUD, Mustafa ONAT, Ünal ÇAVUŞOĞLU & Mmanuel MALONDO. "L2D2: A Novel LSTM Model for Multi-Class Intrusion Detection Systems in the Era of IoMT." IEEE Access, 17 (2025): 7002-7013.

Özet

The rapid growth of IoT has significantly changed modern technology by allowing devices, systems, and services to connect easily across different areas. Due to the growing popularity of Internet of Things (IoT) devices, attackers focus more and more on finding new methods, ways, and vulnerabilities to penetrate IoT networks. Although IoT devices are utilized across a wide range of domains, the Internet of Medical Things (IoMT) holds particular significance due to the sensitive and critical nature of medical information. Consequently, the security of these devices must be treated as a paramount concern within the IoT landscape. In this paper, we propose a novel approach for detecting various intrusion attacks targeting Internet of Medical Things (IoMT) devices, utilizing an enhanced version of the LSTM deep learning algorithm. To evaluate and compare the proposed algorithm with other methods, we used the CICIoMT2024 dataset, which encompasses various types of equipment and corresponding attacks. The results demonstrate that the proposed novel approach achieved an accuracy of 98% for 19 classes, which is remarkably high for classifications and presents a significant and promising outcome for IoMT environments.

Kaynak

IEEE Access

Cilt

13

Bağlantı

https://ieeexplore.ieee.org/document/10830526
https://hdl.handle.net/11352/5167

Koleksiyonlar

  • Bilgisayar Mühendisliği Bölümü [214]
  • Scopus İndeksli Yayınlar / Scopus Indexed Publications [756]
  • WOS İndeksli Yayınlar / WOS Indexed Publications [661]



DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 




| Politika | Rehber | İletişim |

DSpace@FSM

by OpenAIRE
Gelişmiş Arama

sherpa/romeo

Göz at

Tüm DSpaceBölümler & KoleksiyonlarTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreDile GöreBölüme GöreKategoriye GöreYayıncıya GöreErişim ŞekliKurum Yazarına GöreBu KoleksiyonTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreDile GöreBölüme GöreKategoriye GöreYayıncıya GöreErişim ŞekliKurum Yazarına Göre

Hesabım

GirişKayıt

İstatistikler

Google Analitik İstatistiklerini Görüntüle

DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 


|| Politika || Rehber || Kütüphane || FSM Vakıf Üniversitesi || OAI-PMH ||

FSM Vakıf Üniversitesi, İstanbul, Türkiye
İçerikte herhangi bir hata görürseniz, lütfen bildiriniz:

Creative Commons License
FSM Vakıf Üniversitesi Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@FSM:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.