Neural Architecture Search Using Metaheuristics for Automated Cell Segmentation

dc.contributor.authorKuş, Zeki
dc.contributor.authorAydın, Musa
dc.contributor.authorKiraz, Berna
dc.contributor.authorCan, Burhanettin
dc.date.accessioned2023-03-24T12:13:38Z
dc.date.available2023-03-24T12:13:38Z
dc.date.issued2023en_US
dc.departmentFSM Vakıf Üniversitesi, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümüen_US
dc.description.abstractDeep neural networks give successful results for segmentation of medical images. The need for optimizing many hyper-parameters presents itself as a significant limitation hampering the effectiveness of deep neural network based segmentation task. Manual selection of these hyper-parameters is not feasible as the search space increases. At the same time, these generated networks are problem-specific. Recently, studies that perform segmentation of medical images using Neural Architecture Search (NAS) have been proposed. However, these studies significantly limit the possible network structures and search space. In this study, we proposed a structure called UNAS-Net that brings together the advantages of successful NAS studies and is more flexible in terms of the networks that can be created. The UNAS-Net structure has been optimized using metaheuristics including Differential Evolution (DE) and Local Search (LS), and the generated networks have been tested on Optofil and Cell Nuclei data sets. When the results are examined, it is seen that the networks produced by the heuristic methods improve the performance of the U-Net structure in terms of both segmentation performance and computational complexity. As a result, the proposed structure can be used when the automatic generation of neural networks that provide fast inference as well as successful segmentation performance is desired.en_US
dc.identifier.citationKUŞ, Zeki, Musa AYDIN, Berna KİRAZ, & Burhanettin CAN. "Neural Architecture Search Using Metaheuristics for Automated Cell Segmentation". Metaheuristics International Conference, (2023): 158-171.en_US
dc.identifier.doi10.1007/978-3-031-26504-4_12
dc.identifier.endpage171en_US
dc.identifier.issn0302-9743
dc.identifier.issn1611-3349
dc.identifier.scopus2-s2.0-85149623588
dc.identifier.scopusqualityQ3
dc.identifier.startpage158en_US
dc.identifier.urihttps://hdl.handle.net/11352/4413
dc.identifier.wosWOS:001286470600012
dc.identifier.wosqualityN/A
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.institutionauthorKuş, Zeki
dc.institutionauthorAydın, Musa
dc.institutionauthorKiraz, Berna
dc.institutionauthorCan, Burhanettin
dc.language.isoen
dc.publisherSpringeren_US
dc.relation.ispartofMetaheuristics International Conference
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/embargoedAccessen_US
dc.subjectNeural Architecture Searchen_US
dc.subjectCell Segmentationen_US
dc.subjectMetaheuristicsen_US
dc.subjectDeep Learningen_US
dc.titleNeural Architecture Search Using Metaheuristics for Automated Cell Segmentationen_US
dc.typeConference Object

Dosyalar

Orijinal paket

Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
Kuş1.pdf
Boyut:
1.52 MB
Biçim:
Adobe Portable Document Format
Açıklama:
Konferans Öğesi

Lisans paketi

Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
license.txt
Boyut:
1.44 KB
Biçim:
Item-specific license agreed upon to submission
Açıklama: