Clustering Electricity Market Participants Via FRM Models

dc.contributor.authorGülcü, Ayla
dc.contributor.authorÇalışkan, Sedrettin
dc.date.accessioned2021-04-14T08:16:23Z
dc.date.available2021-04-14T08:16:23Z
dc.date.issued2020en_US
dc.departmentFSM Vakıf Üniversitesi, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümüen_US
dc.description.abstractCollateral mechanism in the Electricity Market ensures the payments are executed on a timely manner; thus maintains the continuous cash flow. In order to value collaterals, Takasbank, the authorized central settlement bank, creates segments of the market participants by considering their short-term and long-term debt/credit information arising from all market activities. In this study, the data regarding participants’ daily and monthly debt payment and penalty behaviors is analyzed with the aim of discovering high-risk participants that fail to clear their debts on-time frequently. Different clustering techniques along with different distance metrics are considered to obtain the best clustering. Moreover, data preprocessing techniques along with Recency, Frequency, Monetary Value (RFM) scoring have been used to determine the best representation of the data. The results show that Agglomerative Clustering with cosine distance achieves the best separated clustering when the non-normalized dataset is used; this is also acknowledged by a domain expert.en_US
dc.identifier.citationGÜLCÜ, Ayla & Sedrettin ÇALIŞKAN. "Clustering Electricity Market Participants Via FRM Models". Intelligent Decision Technologies, 14 (2020): 481–492.en_US
dc.identifier.doi10.3233/IDT-200092
dc.identifier.endpage492en_US
dc.identifier.issn1872-4981
dc.identifier.issn1875-8843
dc.identifier.issue14en_US
dc.identifier.scopus2-s2.0-85099604466
dc.identifier.scopusqualityQ3
dc.identifier.startpage481en_US
dc.identifier.urihttps://hdl.handle.net/11352/3280
dc.identifier.wosWOS:000610844300005
dc.identifier.wosqualityQ4
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.institutionauthorGülcü, Ayla
dc.language.isoen
dc.publisherIOS Pressen_US
dc.relation.ispartofIntelligent Decision Technologies
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectRFM Scoringen_US
dc.subjectClusteringen_US
dc.subjectSegmentationen_US
dc.titleClustering Electricity Market Participants Via FRM Modelsen_US
dc.typeArticle

Dosyalar

Orijinal paket

Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
Gülcü.pdf
Boyut:
2.45 MB
Biçim:
Adobe Portable Document Format
Açıklama:
Ana makale

Lisans paketi

Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
license.txt
Boyut:
1.44 KB
Biçim:
Item-specific license agreed upon to submission
Açıklama: