Automatic Detection of Pulmonary Embolism in CTA Images Using Machine Learning

dc.contributor.authorTulum, Gökalp
dc.contributor.authorOsman, Onur
dc.contributor.authorŞahin, Sinan
dc.contributor.authorÖzkan, Haydar
dc.date.accessioned2020-11-24T12:06:07Z
dc.date.available2020-11-24T12:06:07Z
dc.date.issued2017en_US
dc.departmentFSM Vakıf Üniversitesi, Mühendislik Fakültesi, Biyomedikal Mühendisliği Bölümüen_US
dc.description.abstractIn this study, a novel computer-aided detection (CAD) method is introduced to detect pulmonary embolism (PE) in computed tomography angiography (CTA) images. This method consists of lung vessel segmentation, PE candidate detection, feature extraction, feature selection and classification of PE. PE candidates are determined in lung vessel tree. Then, feature extraction is carried out based on morphological properties of PEs. Stepwise feature selection method is used to find the best set of the features. Artificial neural network (ANN), k-nearest neighbours (KNN) and support vector machines (SVM) are used as classifiers. The CAD system is evaluated for 33 CTA datasets with 10 fold cross-validation. The sensitivities of these classifiers are obtained as 98.3 %, 57.3 % and 73 % at 10.2, 5.7 and 8.2 false positives per dataset respectively.en_US
dc.identifier.citationÖZKAN, Haydar, Gökalp TULUM, Onur OSMAN, & Sinan ŞAHİN. "Automatic Detection of Pulmonary Embolism in CTA Images Using Machine Learning." Elektronika ir Elektrotechnika, 23.1 (2017): 63-67.en_US
dc.identifier.doi10.5755/j01.eie.23.1.17585
dc.identifier.issn1392-1215
dc.identifier.scopus2-s2.0-85017558702
dc.identifier.scopusqualityQ3
dc.identifier.urihttps://eejournal.ktu.lt/index.php/elt/article/view/17585
dc.identifier.urihttps://hdl.handle.net/11352/3218
dc.identifier.wosWOS:000395819000011
dc.identifier.wosqualityQ4
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.institutionauthor[0-Belirlenecek]
dc.language.isoen
dc.publisherKaunas University of Technologyen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectArtificial Neural Networken_US
dc.subjectK-nearest Neighboursen_US
dc.subjectPulmonary Embolismen_US
dc.subjectSupport Vector Machinesen_US
dc.titleAutomatic Detection of Pulmonary Embolism in CTA Images Using Machine Learningen_US
dc.typeArticle

Dosyalar

Orijinal paket

Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
Özkan & Tulum & Osman & Şahin.pdf
Boyut:
800.88 KB
Biçim:
Adobe Portable Document Format
Açıklama:
Ana Makale

Lisans paketi

Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
license.txt
Boyut:
1.53 KB
Biçim:
Item-specific license agreed upon to submission
Açıklama: