Radar Placement Optimization Based on Adaptive Multi-Objective Meta-Heuristics

dc.contributor.authorTema, Emrah Y.
dc.contributor.authorSahmoud, Shaaban
dc.contributor.authorKiraz, Berna
dc.date.accessioned2023-12-01T10:16:36Z
dc.date.available2023-12-01T10:16:36Z
dc.date.issued2024en_US
dc.departmentFSM Vakıf Üniversitesi, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümüen_US
dc.description.abstractAirspace surveillance is a significant issue for many countries to control and manage their airspace. The number of radars used and their coverage rate are the main issues to consider in this case. Therefore, this paper addresses the problem of finding the best radar locations to obtain the highest coverage rate with the least possible number of radars in a certain region. The radar placement problem is considered as a multi-objective optimization problem with two objectives: the number of radars and the coverage rate. To perfectly solve this optimization problem, a set of multi-objective meta-heuristic approaches based on simulated annealing, memory-based steady-state genetic algorithm, a decomposition-based multi-objective algorithm with differential evolution, and non-dominated sorting genetic algorithm (NSGA-II) are utilized. Algorithms are tested on a dataset created using DTED-1 map elevation data for two different selected regions. Based on the results, the NSGA-II algorithm achieves the best results and the highest coverage ratios among the tested algorithms. Two improved versions of the NSGA-II algorithm are also proposed to enhance its performance and make it more suitable for solving this optimization problem. The experimental results show that a coverage rate of 98% could be achieved with a small number of radars, and by increasing the number of radars, it exceeds 99%.en_US
dc.identifier.citationTEMA, Emrah Y., Shaaban SAHMOUD & Berna KİRAZ."Radar Placement Optimization Based on Adaptive Multi-Objective Meta-Heuristics". Expert Systems with Applications, 239 (2024):122568.en_US
dc.identifier.doi10.1016/j.eswa.2023.122568
dc.identifier.issn0957-4174
dc.identifier.issn1873-6793
dc.identifier.issue239en_US
dc.identifier.scopus2-s2.0-85177200767
dc.identifier.scopusqualityQ1
dc.identifier.startpage122568en_US
dc.identifier.urihttps://hdl.handle.net/11352/4684
dc.identifier.wosWOS:001112014100001
dc.identifier.wosqualityQ1
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.institutionauthorTema, Emrah Y.
dc.institutionauthorSahmoud, Shaaban
dc.institutionauthorKiraz, Berna
dc.language.isoen
dc.publisherElsevieren_US
dc.relation.ispartofExpert Systems with Applications
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/embargoedAccessen_US
dc.subjectAirspace Surveillanceen_US
dc.subjectMulti-objective Optimization Problemsen_US
dc.subjectMulti-objective Meta-heuristicsen_US
dc.subjectRadar Coverage Optimizationen_US
dc.subjectRadar Placement Problemen_US
dc.titleRadar Placement Optimization Based on Adaptive Multi-Objective Meta-Heuristicsen_US
dc.typeArticle

Dosyalar

Orijinal paket

Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
Tema.pdf
Boyut:
3.55 MB
Biçim:
Adobe Portable Document Format
Açıklama:
Ana Makale

Lisans paketi

Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
license.txt
Boyut:
1.44 KB
Biçim:
Item-specific license agreed upon to submission
Açıklama: