A Unified Framework for Multi-Language Sentiment Analysis

dc.contributor.authorAbdellatif, Abdelrahman
dc.contributor.authorSahmoud, Shaaban
dc.contributor.authorNizam, Ali
dc.date.accessioned2023-11-10T09:11:49Z
dc.date.available2023-11-10T09:11:49Z
dc.date.issued2023en_US
dc.departmentFSM Vakıf Üniversitesi, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümüen_US
dc.description.abstractThe unified framework for multi-language sentiment analysis is a vital aspect of understanding customer opinions, emotions, and feedback. This paper presents a unified framework to increase the performance of the multi-language sentimental analysis. Two popular machine translation services, Google Translate, and Yandex Translate are employed to unify the sentiment analysis for the considered languages including English, Turkish, Arabic, and French. Our findings highlight the importance of machine translation services in facilitating and enhancing the performance of sentiment analysis algorithms for different languages. Our framework was evaluated on several datasets and showed promising results, with improvements in accuracy ranging from 1% to 22% depending on the language. Our approach outperforms language-specific models and demonstrates the effectiveness of the proposed translation-based multi-language framework. In addition, we found that the performance of sentiment analysis varies among the different languages, with Google Translate exhibiting better performance in sentiment analysis of Turkish and Arabic translations while Yandex Translate shows better results in sentiment analysis of English and French translations.en_US
dc.identifier.citationABDELLATİF, Abdelrahman, Shaaban SAHMOUD & Ali NİZAM. "A Unified Framework for Multi-Language Sentiment Analysis". 2023 3rd International Conference on Computing and Information Technology (ICCIT), (2023).en_US
dc.identifier.doi10.1109/ICCIT58132.2023.10273894
dc.identifier.scopus2-s2.0-85175468717
dc.identifier.scopusqualityN/A
dc.identifier.urihttps://hdl.handle.net/11352/4671
dc.indekslendigikaynakScopus
dc.institutionauthorAbdellatif, Abdelrahman
dc.institutionauthorSahmoud, Shaaban
dc.institutionauthorNizam, Ali
dc.language.isoen
dc.publisherIEEEen_US
dc.relation.ispartof2023 3rd International Conference on Computing and Information Technology (ICCIT)
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/embargoedAccessen_US
dc.subjectSentiment Analysisen_US
dc.subjectMulti-language Sentiment Analysisen_US
dc.subjectDeep Learningen_US
dc.subjectTranslation-based Sentiment Analysisen_US
dc.subjectLSTMen_US
dc.titleA Unified Framework for Multi-Language Sentiment Analysisen_US
dc.typeConference Object

Dosyalar

Orijinal paket

Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
Abdellatif.pdf
Boyut:
3.44 MB
Biçim:
Adobe Portable Document Format
Açıklama:
Konferans Öğesi

Lisans paketi

Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
license.txt
Boyut:
1.44 KB
Biçim:
Item-specific license agreed upon to submission
Açıklama: