An Application of Artificial Neural Networks for Solving Fractional Higher-order Linear Integro-differential Equations

dc.contributor.authorAllahviranloo, T.
dc.contributor.authorJafarian, A.
dc.contributor.authorSaneifard, R.
dc.contributor.authorGhalami, N.
dc.contributor.authorNia, S. Measoomy
dc.contributor.authorKiani, F.
dc.contributor.authorGamiz, U. Fernandez
dc.contributor.authorNoeiaghdam, S.
dc.date.accessioned2023-07-28T14:07:46Z
dc.date.available2023-07-28T14:07:46Z
dc.date.issued2023en_US
dc.departmentFSM Vakıf Üniversitesi, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümüen_US
dc.description.abstractThis ongoing work is vehemently dedicated to the investigation of a class of ordinary linear Volterra type integro-differential equations with fractional order in numerical mode. By replacing the unknown function by an appropriate multilayered feed-forward type neural structure, the fractional problem of such initial value is changed into a course of non-linear minimization equations, to some extent. Put differently, interest was sparked in structuring an optimized iterative first-order algorithm to estimate solutions for the origin fractional problem. On top of that, some computer simulation models exemplify the preciseness and well-functioning of the indicated iterative technique. The outstanding accomplished numerical outcomes conveniently reflect the productivity and competency of artificial neural network methods compared to customary approaches.en_US
dc.identifier.citationALLAHVİRANLOO , T., A. JAFARİAN , R. SANEİFARD , N. GHALAMİ , S. MEASOOMY NİA, F. KİANİ , U. FERNANDEZ-GAMİZ & S. NOEİAGHDAM. "An Application of Artificial Neural Networks for Solving Fractional Higher-order Linear Integro-differential Equations." Boundary Value Problems, 74 (2023): 2-14.en_US
dc.identifier.doi10.1186/s13661-023-01762-x
dc.identifier.endpage14en_US
dc.identifier.issn1687-2770
dc.identifier.issue74en_US
dc.identifier.scopus2-s2.0-85165256257
dc.identifier.scopusqualityQ1
dc.identifier.startpage2en_US
dc.identifier.urihttps://boundaryvalueproblems.springeropen.com/articles/10.1186/s13661-023-01762-x
dc.identifier.urihttps://hdl.handle.net/11352/4626
dc.identifier.wosWOS:001029330500001
dc.identifier.wosqualityQ1
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.institutionauthorKiani, F.
dc.language.isoen
dc.publisherSpringer Natureen_US
dc.relation.ispartofBoundary Value Problems
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectHigher-order Linear Integro-differential Equationen_US
dc.subjectArtificial Neural Network Approachen_US
dc.subjectCaputo Fractional Derivativeen_US
dc.subjectLearning Algorithmen_US
dc.subjectCost Functionen_US
dc.titleAn Application of Artificial Neural Networks for Solving Fractional Higher-order Linear Integro-differential Equationsen_US
dc.typeArticle

Dosyalar

Orijinal paket

Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
Allahviranloo.pdf
Boyut:
1.51 MB
Biçim:
Adobe Portable Document Format
Açıklama:
Ana makale

Lisans paketi

Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
license.txt
Boyut:
1.44 KB
Biçim:
Item-specific license agreed upon to submission
Açıklama: