An Application of Artificial Neural Networks for Solving Fractional Higher-order Linear Integro-differential Equations
| dc.contributor.author | Allahviranloo, T. | |
| dc.contributor.author | Jafarian, A. | |
| dc.contributor.author | Saneifard, R. | |
| dc.contributor.author | Ghalami, N. | |
| dc.contributor.author | Nia, S. Measoomy | |
| dc.contributor.author | Kiani, F. | |
| dc.contributor.author | Gamiz, U. Fernandez | |
| dc.contributor.author | Noeiaghdam, S. | |
| dc.date.accessioned | 2023-07-28T14:07:46Z | |
| dc.date.available | 2023-07-28T14:07:46Z | |
| dc.date.issued | 2023 | en_US |
| dc.department | FSM Vakıf Üniversitesi, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümü | en_US |
| dc.description.abstract | This ongoing work is vehemently dedicated to the investigation of a class of ordinary linear Volterra type integro-differential equations with fractional order in numerical mode. By replacing the unknown function by an appropriate multilayered feed-forward type neural structure, the fractional problem of such initial value is changed into a course of non-linear minimization equations, to some extent. Put differently, interest was sparked in structuring an optimized iterative first-order algorithm to estimate solutions for the origin fractional problem. On top of that, some computer simulation models exemplify the preciseness and well-functioning of the indicated iterative technique. The outstanding accomplished numerical outcomes conveniently reflect the productivity and competency of artificial neural network methods compared to customary approaches. | en_US |
| dc.identifier.citation | ALLAHVİRANLOO , T., A. JAFARİAN , R. SANEİFARD , N. GHALAMİ , S. MEASOOMY NİA, F. KİANİ , U. FERNANDEZ-GAMİZ & S. NOEİAGHDAM. "An Application of Artificial Neural Networks for Solving Fractional Higher-order Linear Integro-differential Equations." Boundary Value Problems, 74 (2023): 2-14. | en_US |
| dc.identifier.doi | 10.1186/s13661-023-01762-x | |
| dc.identifier.endpage | 14 | en_US |
| dc.identifier.issn | 1687-2770 | |
| dc.identifier.issue | 74 | en_US |
| dc.identifier.scopus | 2-s2.0-85165256257 | |
| dc.identifier.scopusquality | Q1 | |
| dc.identifier.startpage | 2 | en_US |
| dc.identifier.uri | https://boundaryvalueproblems.springeropen.com/articles/10.1186/s13661-023-01762-x | |
| dc.identifier.uri | https://hdl.handle.net/11352/4626 | |
| dc.identifier.wos | WOS:001029330500001 | |
| dc.identifier.wosquality | Q1 | |
| dc.indekslendigikaynak | Web of Science | |
| dc.indekslendigikaynak | Scopus | |
| dc.institutionauthor | Kiani, F. | |
| dc.language.iso | en | |
| dc.publisher | Springer Nature | en_US |
| dc.relation.ispartof | Boundary Value Problems | |
| dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| dc.rights | info:eu-repo/semantics/openAccess | en_US |
| dc.subject | Higher-order Linear Integro-differential Equation | en_US |
| dc.subject | Artificial Neural Network Approach | en_US |
| dc.subject | Caputo Fractional Derivative | en_US |
| dc.subject | Learning Algorithm | en_US |
| dc.subject | Cost Function | en_US |
| dc.title | An Application of Artificial Neural Networks for Solving Fractional Higher-order Linear Integro-differential Equations | en_US |
| dc.type | Article |










