An Efficient Lung Sound Classification Technique Based on MFCC and HDMR

dc.contributor.authorArar, Mahmud Esad
dc.contributor.authorSedef, Herman
dc.date.accessioned2023-08-04T11:09:24Z
dc.date.available2023-08-04T11:09:24Z
dc.date.issued2023en_US
dc.departmentFSM Vakıf Üniversitesi, Mühendislik Fakültesi, Biyomedikal Mühendisliği Bölümüen_US
dc.description.abstractIn this work, an efficient feature extraction scheme is developed for classifying the pulmonary diseases. The proposed method is hybrid which combines two important techniques that are Mel Frequency Cepstral Coefficients (MFCC) and High-Dimensional Model Representation (HDMR). MFCC is capable of imitating the human ear; therefore, it is capable of characterizing the lung sounds acquired by a stethoscope. On the other hand, HDMR performs decorrelation and denoising to the high-dimensional data. The MFCC entries establish a two-dimensional feature matrix, which is decomposed in terms of less dimensional entities by the application of HDMR. These entities are considered feature vectors that are then fed to the relevant machine learning classification algorithms and then the overall accuracies are calculated. According to the results, the proposed algorithm achieves 97.2% classification accuracy which is competitive with other existing state-of-theart methods in the literature. HDMR also improves significantly the classification efficiency of the proposed technique. The results emphasize that HDMR can be employed as an efficient method in recognizing pulmonary disease tasks.en_US
dc.identifier.citationARAR, Mahmud Esad & Herman SEDEF. "An Efficient Lung Sound Classification Technique Based on MFCC and HDMR". Signal, Image and Video Processing, (2023): 1-10.en_US
dc.identifier.doi10.1007/s11760-023-02672-2
dc.identifier.endpage10en_US
dc.identifier.issn1863-1703
dc.identifier.issn1863-1711
dc.identifier.scopus2-s2.0-85165549985
dc.identifier.scopusqualityQ2
dc.identifier.startpage1en_US
dc.identifier.urihttps://hdl.handle.net/11352/4630
dc.identifier.wosWOS:001034683100001
dc.identifier.wosqualityQ3
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.institutionauthorArar, Mahmud Esad
dc.language.isoen
dc.publisherSpringeren_US
dc.relation.ispartofSignal, Image and Video Processing
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/embargoedAccessen_US
dc.subjectLung soundsen_US
dc.subjectPulmonary diseasesen_US
dc.subjectFeature extractionen_US
dc.subjectMFCCen_US
dc.subjectHDMRen_US
dc.subjectMachine learningen_US
dc.subjectClassificationen_US
dc.titleAn Efficient Lung Sound Classification Technique Based on MFCC and HDMRen_US
dc.typeArticle

Dosyalar

Orijinal paket

Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
Arar.pdf
Boyut:
1.03 MB
Biçim:
Adobe Portable Document Format
Açıklama:
Ana makale

Lisans paketi

Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
license.txt
Boyut:
1.44 KB
Biçim:
Item-specific license agreed upon to submission
Açıklama: