Sahand: A Software Fault-Prediction Method Using Autoencoder Neural Network and K-Means Algorithm

dc.contributor.authorArasteh, Bahman
dc.contributor.authorGolshan, Sahar
dc.contributor.authorShami, Shlva
dc.contributor.authorKiani, Farzad
dc.date.accessioned2024-04-19T08:34:22Z
dc.date.available2024-04-19T08:34:22Z
dc.date.issued2024en_US
dc.departmentFSM Vakıf Üniversitesi, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümüen_US
dc.description.abstractSoftware is playing a growing role in many safety-critical applications, and software systems dependability is a major concern. Predicting faulty modules of software before the testing phase is one method for enhancing software reliability. The ability to predict and identify the faulty modules of software can lower software testing costs. Machine learning algorithms can be used to solve software fault prediction problem. Identifying the faulty modules of software with the maximum accuracy, precision, and performance are the main objectives of this study. A hybrid method combining the autoencoder and the K-means algorithm is utilized in this paper to develop a software fault predictor. The autoencoder algorithm, as a preprocessor, is used to select the effective attributes of the training dataset and consequently to reduce its size. Using an autoencoder with the K-means clustering method results in lower clustering error and time. Tests conducted on the standard NASA PROMIS data sets demonstrate that by removing the inefficient elements from the training data set, the proposed fault predictor has increased accuracy (96%) and precision (93%). The recall criteria provided by the proposed method is about 87%. Also, reducing the time necessary to create the software fault predictor is the other merit of this study.en_US
dc.identifier.citationARASTEH, Bahman, Sahar GOLSHAN, Shiva SHAMI & Farzad KIANI. "Sahand: A Software Fault-Prediction Method Using Autoencoder Neural Network and K-Means Algorithm". Journal of Electronic Testing, (2024): 1-15.en_US
dc.identifier.doi10.1007/s10836-024-06116-8
dc.identifier.endpage15en_US
dc.identifier.issn0923-8174
dc.identifier.issn1573-0727
dc.identifier.orcidhttps://orcid.org/0000-0001-5202-6315en_US
dc.identifier.orcidhttps://orcid.org/0000-0002-0354-9344en_US
dc.identifier.scopus2-s2.0-85190088218
dc.identifier.scopusqualityQ3
dc.identifier.startpage1en_US
dc.identifier.urihttps://hdl.handle.net/11352/4889
dc.identifier.wosWOS:001201327500001
dc.identifier.wosqualityQ4
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.institutionauthorKiani, Farzad
dc.language.isoen
dc.publisherSpringeren_US
dc.relation.ispartofJournal of Electronic Testing
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/embargoedAccessen_US
dc.subjectSoftware Fault Predictionen_US
dc.subjectClusteringen_US
dc.subjectAutoencoderen_US
dc.subjectK-meansen_US
dc.subjectAccuracyen_US
dc.titleSahand: A Software Fault-Prediction Method Using Autoencoder Neural Network and K-Means Algorithmen_US
dc.typeArticle

Dosyalar

Orijinal paket

Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
Arasteh.pdf
Boyut:
2.29 MB
Biçim:
Adobe Portable Document Format
Açıklama:
Ana Makale

Lisans paketi

Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
license.txt
Boyut:
1.44 KB
Biçim:
Item-specific license agreed upon to submission
Açıklama: