Deep Learning based Malware Detection for Android Systems: A Comparative Analysis

dc.contributor.authorBayazıt, Esra Çalık
dc.contributor.authorŞahingöz, Özgür Koray
dc.contributor.authorDoğan, Buket
dc.date.accessioned2023-05-22T11:30:20Z
dc.date.available2023-05-22T11:30:20Z
dc.date.issued2023en_US
dc.departmentFSM Vakıf Üniversitesi, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümüen_US
dc.description.abstractNowadays, cyber attackers focus on Android, which is the most popular open-source operating system, as main target by applying some malicious software (malware) to access users' private information, control the device, or harm end-users. To detect Android malware, security experts have offered some learning-based models. In this study, we developed an Android malware detection system that uses different machine\deep learning models by performing both dynamic analyses, in which suspected malware is executed in a safe environment for observing its behaviours, and static analysis, which examines a malware file without any execution on the Android device. The benefits and weaknesses of these models and analyses are described in detail in this comparative study, and directions for future studies are drawn. Experimental results showed that the proposed models gave better results than those in the literature, with 0.988 accuracy for LSTM on static analysis and 0.953 accuracy for CNN-LSTM on dynamic analysis.en_US
dc.identifier.citationBAYAZIT, Esra ÇALIK, Özgür Koray ŞAHİNGÖZ & Buket DOĞAN. "Deep Learning based Malware Detection for Android Systems: A Comparative Analysis". Technical Gazette, 30.3 (2023): 787-796.en_US
dc.identifier.doi10.17559/TV-20220907113227
dc.identifier.endpage796en_US
dc.identifier.issn1330-3651
dc.identifier.issn1848-6339
dc.identifier.issue3en_US
dc.identifier.scopus2-s2.0-85159159713
dc.identifier.scopusqualityQ3
dc.identifier.startpage787en_US
dc.identifier.urihttps://hdl.handle.net/11352/4563
dc.identifier.volume30en_US
dc.identifier.wosWOS:000975513400012
dc.identifier.wosqualityQ3
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.institutionauthorBayazıt, Esra Çalık
dc.language.isoen
dc.publisherSveuciliste Josipa Jurja Strossmayera u Osijekuen_US
dc.relation.ispartofTechnical Gazette
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/embargoedAccessen_US
dc.subjectAndroiden_US
dc.subjectDeep Learningen_US
dc.subjectMalware Detection Systemsen_US
dc.subjectMalware Analysisen_US
dc.titleDeep Learning based Malware Detection for Android Systems: A Comparative Analysisen_US
dc.typeArticle

Dosyalar

Orijinal paket

Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
Bayazıt.pdf
Boyut:
755.43 KB
Biçim:
Adobe Portable Document Format
Açıklama:
Ana makale

Lisans paketi

Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
license.txt
Boyut:
1.44 KB
Biçim:
Item-specific license agreed upon to submission
Açıklama: