Prediction of the Remaining Useful Life of Engines for Remanufacturing Using a Semi-supervised Deep Learning Model Trained by the Bees Algorithm

Yükleniyor...
Küçük Resim

Tarih

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Springer

Erişim Hakkı

info:eu-repo/semantics/embargoedAccess

Özet

Smart and sustainable manufacturing is important for enterprises to handle global challenges [1]. Products, systems, and components are reused, remanufactured, and recycled instead of being disposed of in landfills, which supports a circular material flow. In the case of remanufacturing, where the idea is that components and products are returned to “like-new” or “better-than-new” conditions, it is mandatory to check their quality and health status [2]. Remaining Useful Life (RUL) prediction within the scope of predictive maintenance is a critical stage for remanufacturing decisions on complex machines to prevent unexpected degradations. Estimation of the RUL of a product is one of the most important tasks for Predictive Maintenance Systems (PMS). Instead of operating reactive or preventive maintenance, predictive maintenance reduces costs and can pinpoint problems in complex machines before failure since it can estimate the usable time of the product before the time of maintenance or replacement.

Açıklama

Anahtar Kelimeler

Kaynak

Intelligent Production and Manufacturing Optimisation—The Bees Algorithm Approach

WoS Q Değeri

Scopus Q Değeri

Cilt

Sayı

Künye

ZEYBEK, Sultan. "Prediction of the Remaining Useful Life of Engines for Remanufacturing Using a Semi-supervised Deep Learning Model Trained by the Bees Algorithm". Intelligent Production and Manufacturing Optimisation-The Bees Algorithm Approach, (2023): 383-397.

Onay

İnceleme

Ekleyen

Referans Veren