AI-Powered Prediction of Dental Space Maintainer Needs Using X-Ray Imaging: A CNN-Based Approach for Pediatric Dentistry

dc.contributor.authorYelkenci, Aslıhan
dc.contributor.authorPolat, Günseli Güven
dc.contributor.authorÖncü, Emir
dc.contributor.authorÇiftçi, Fatih
dc.date.accessioned2025-04-16T07:24:50Z
dc.date.available2025-04-16T07:24:50Z
dc.date.issued2025en_US
dc.departmentFSM Vakıf Üniversitesi, Mühendislik Fakültesi, Biyomedikal Mühendisliği Bölümüen_US
dc.description.abstractSpace maintainers (SMs) are essential for preserving dental arch integrity after premature tooth loss. This study aimed to develop a deep learning model to predict the necessity of SMs and identify specific teeth requiring intervention. A dataset of 400 dental X-rays was preprocessed to standardize image dimensions and convert them into numerical representations for machine learning. The dataset was divided into training (80%) and testing (20%) subsets. A Convolutional Neural Network (CNN) was designed with multiple convolutional and pooling layers, followed by fully connected layers for binary classification. The model was trained using 30 epochs and evaluated with accuracy, precision, recall, F1-score, ROC AUC, and MCC. The CNN achieved 94% accuracy, with a precision of 0.93 for Class 0 (no SM needed) and 0.95 for Class 1 (SM needed). The ROC AUC was 0.94, and the MCC was 0.875, indicating strong reliability. When tested on 86 X-ray images, the model successfully identified specific teeth (showing teeth number) requiring SMs, with minimal errors. These results suggest that the proposed AI model provides high-performance predictions for SM necessity, offering a valuable decision-support tool for pediatric dentistry.en_US
dc.identifier.citationYELKENCİ, Aslıhan, Günseli Güven POLAT, Emir ÖNCÜ & Fatih ÇİFTÇİ. "AI-Powered Prediction of Dental Space Maintainer Needs Using X-Ray Imaging: A CNN-Based Approach for Pediatric Dentistry". Applied Sciences, 15.7 (2025): 1-16.en_US
dc.identifier.doi10.3390/app15073920
dc.identifier.endpage16en_US
dc.identifier.issn2076-3417
dc.identifier.issue7en_US
dc.identifier.orcidhttps://orcid.org/0000-0001-6076-1715en_US
dc.identifier.orcidhttps://orcid.org/0009-0001-9373-9167en_US
dc.identifier.orcidhttps://orcid.org/0000-0002-3062-2404en_US
dc.identifier.scopus2-s2.0-105002275516
dc.identifier.scopusqualityQ1
dc.identifier.startpage1en_US
dc.identifier.urihttps://www.mdpi.com/2076-3417/15/7/3920
dc.identifier.urihttps://hdl.handle.net/11352/5282
dc.identifier.volume15en_US
dc.identifier.wosWOS:001463655000001
dc.identifier.wosqualityQ1
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.institutionauthorÖncü, Emir
dc.institutionauthorÇiftçi, Fatih
dc.language.isoen
dc.publisherMDPIen_US
dc.relation.ispartofApplied Sciences
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectSpace Maintaineren_US
dc.subjectConvolutional Neural Networken_US
dc.subjectX-ray İmagingen_US
dc.subjectMachine Learningen_US
dc.subjectPredictionen_US
dc.titleAI-Powered Prediction of Dental Space Maintainer Needs Using X-Ray Imaging: A CNN-Based Approach for Pediatric Dentistryen_US
dc.typeArticle

Dosyalar

Orijinal paket

Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
Yelkenci.pdf
Boyut:
3.03 MB
Biçim:
Adobe Portable Document Format
Açıklama:
Ana Makale

Lisans paketi

Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
license.txt
Boyut:
1.44 KB
Biçim:
Item-specific license agreed upon to submission
Açıklama: