A Fast Algorithm for Hunting State-Backed Twitter Trolls

dc.contributor.authorSahmoud, Shaaban
dc.contributor.authorAbdellatif, Abdelrahman
dc.contributor.authorRagheb, Youssof
dc.date.accessioned2022-09-30T11:56:14Z
dc.date.available2022-09-30T11:56:14Z
dc.date.issued2022en_US
dc.departmentFSM Vakıf Üniversitesi, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümüen_US
dc.description.abstractIn recent years, state-backed troll accounts have been adopted extensively by many political parties, organizations, and governments to negatively influence political systems, persecute perceived opponents, and exacerbate divisiveness within societies. Thus, the need for an automatic state-backed troll classification system has increased. Various algorithms have been proposed in the literature to handle this problem, but a majority of them consider all types of trolls as one type which decreases the performance of classification algorithms. Our goal in this paper is to design a thorough method for detecting state-backed trolls on Twitter with the ability to work efficiently in any case regardless of the language, the location, and the purpose of the troll account. For accurate classification, a set of novel effective and powerful features from various categories are proposed. To train our algorithm, we gathered a large and relevant dataset from Twitter. The results show that the proposed algorithm achieves high classification accuracy (approximately 99%) and has the ability to classify state-backed troll accounts regardless of the language or the location of the account.en_US
dc.identifier.citationSAHMOUD, Shaaban, Abdelrahman ABDELLATIF & Youssof RAGHEB. "A Fast Algorithm for Hunting State-Backed Twitter Trolls". Pervasive Computing and Social Networking, (2022): 643–657.en_US
dc.identifier.doi10.1007/978-981-19-2840-6_49
dc.identifier.endpage657en_US
dc.identifier.issn2367-3370
dc.identifier.issn2367-3389
dc.identifier.orcidhttps://orcid.org/0000-0003-0148-2382en_US
dc.identifier.orcidhttps://orcid.org/0000-0003-3681-2839en_US
dc.identifier.scopus2-s2.0-85137982663
dc.identifier.scopusqualityQ4
dc.identifier.startpage643en_US
dc.identifier.urihttps://hdl.handle.net/11352/4178
dc.identifier.wosWOS:000866386000048
dc.identifier.wosqualityN/A
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.institutionauthorSahmoud, Shaaban
dc.institutionauthorAbdellatif, Abdelrahman
dc.institutionauthorRagheb, Youssof
dc.language.isoen
dc.publisherSpringeren_US
dc.relation.ispartofPervasive Computing and Social Networking
dc.relation.publicationcategoryKitap Bölümü - Uluslararasıen_US
dc.rightsinfo:eu-repo/semantics/embargoedAccessen_US
dc.subjectTroll Detectionen_US
dc.subjectState-backed Trollsen_US
dc.subjectOnline Antisocial Behaviorsen_US
dc.subjectSocial Mediaen_US
dc.subjectTwitter Troll Accountsen_US
dc.titleA Fast Algorithm for Hunting State-Backed Twitter Trollsen_US
dc.typeBook Part

Dosyalar

Orijinal paket

Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
Sahmoud.pdf
Boyut:
1.92 MB
Biçim:
Adobe Portable Document Format
Açıklama:
Kitap Bölümü

Lisans paketi

Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
license.txt
Boyut:
1.44 KB
Biçim:
Item-specific license agreed upon to submission
Açıklama: