An Improved Clustering Algorithm for Text Mining: Multi-Cluster Spherical K-Means

dc.contributor.authorTunalı, Volkan
dc.contributor.authorBilgin, Turgay
dc.contributor.authorÇamurcu, Ali Yılmaz
dc.date.accessioned2021-05-07T07:33:13Z
dc.date.available2021-05-07T07:33:13Z
dc.date.issued2016en_US
dc.departmentFSM Vakıf Üniversitesi, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümüen_US
dc.description.abstractThanks to advances in information and communication technologies, there is a prominent increase in the amount of information produced specifically in the form of text documents. In order to, effectively deal with this “information explosion” problem and utilize the huge amount of text databases, efficient and scalable tools and techniques are indispensable. In this study, text clustering which is one of the most important techniques of text mining that aims at extracting useful information by processing data in textual form is addressed. An improved variant of spherical K-Means (SKM) algorithm named multi-cluster SKM is developed for clustering high dimensional document collections with high performance and efficiency. Experiments were performed on several document data sets and it is shown that the new algorithm provides significant increase in clustering quality without causing considerable difference in CPU time usage when compared to SKM algorithm.en_US
dc.identifier.citationTUNALI, Volkan, Turgay BİLGİN & Ali Yılmaz ÇAMURCU."An Improved Clustering Algorithm for Text Mining: Multi-Cluster Spherical K-Means". The International Arab Journal of Information Technology, 13.1 (2016): 12-19.en_US
dc.identifier.endpage19en_US
dc.identifier.issue1en_US
dc.identifier.scopusqualityN/A
dc.identifier.startpage12en_US
dc.identifier.urihttps://hdl.handle.net/11352/3509
dc.identifier.volume13en_US
dc.identifier.wosqualityN/A
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.institutionauthorÇamurcu, Ali Yılmaz
dc.language.isoen
dc.publisherZarqa Universityen_US
dc.relation.ispartofThe International Arab Journal of Information Technology
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/embargoedAccessen_US
dc.subjectData Miningen_US
dc.subjectText Miningen_US
dc.subjectDocument Clusteringen_US
dc.subjectSKMen_US
dc.titleAn Improved Clustering Algorithm for Text Mining: Multi-Cluster Spherical K-Meansen_US
dc.typeArticle

Dosyalar

Orijinal paket

Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
Tunalı.pdf
Boyut:
230.25 KB
Biçim:
Adobe Portable Document Format
Açıklama:
Ana Makale

Lisans paketi

Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
license.txt
Boyut:
1.44 KB
Biçim:
Item-specific license agreed upon to submission
Açıklama: