A Microstrip Monopole Antenna Design for 5G Sub-6 GHz Applications Using Deep Learning

dc.contributor.authorÇolak, Berker
dc.contributor.authorBelen, Mehmet Ali
dc.contributor.authorKiani, Farzad
dc.contributor.authorTari, Özlem
dc.contributor.authorMahouti, Peyman
dc.contributor.authorAkgöl, Oğuzhan
dc.date.accessioned2026-02-03T14:30:16Z
dc.date.issued2026
dc.departmentFSM Vakıf Üniversitesi, Rektörlük, Yapay Zekâ ve Veri Bilimi Uygulama ve Araştırma Merkezi
dc.description.abstractThis study presents the design and optimization of a microstrip monopole antenna for 5G sub-6 GHz applications, employing a deep learning-based surrogate model combined with honeybee mating optimization (HBMO). The studied antenna structure employs air via arrays, intended to enhance antenna performance, including improved impedance matching and increased bandwidth. It is important to note that, unlike conventional antennas, the proposed design does not include a fully enclosed metallic cavity similar to a substrate integrated waveguide (SIW) antenna designs. A sensitivity analysis was conducted to assess the impact of these parameters, emphasizing the need for optimal tuning. To generate training and test datasets efficiently, Latin hypercube sampling (LHS) was used. A convolutional neural network (CNN) surrogate model was trained, outperforming other machine learning (ML) algorithms in predictive accuracy and generalization. The proposed CNN-HBMO framework reduced computational costs by minimizing the need for expensive electromagnetic (EM) simulations, enabling rapid design space exploration. The optimized antenna was fabricated and validated through experimental measurements, achieving 2–3 dBi gain and 𝑆11 < − 10 dB across the 2.7–5.2 GHz band. Compared to existing designs, the proposed antenna offers a compact size (34 ×34 mm) with competitive performance, making it suitable for multi-band 5G applications.
dc.identifier.citationÇOLAK, Berker, Mehmet Ali BELEN, Farzad KIANI, Özlem TARI, Peyman MAHOUTI & Oğuzhan AKGÖL. "A Microstrip Monopole Antenna Design for 5G Sub-6 GHz Applications Using Deep Learning". IET Communications, 20.1 (2026): 1-8.
dc.identifier.doi10.1049/cmu2.70127
dc.identifier.endpage8
dc.identifier.issue1
dc.identifier.orcidhttps://orcid.org/0009-0000-6575-4661
dc.identifier.orcidhttps://orcid.org/0000-0002-1423-1569
dc.identifier.scopus2-s2.0-105026752431
dc.identifier.startpage1
dc.identifier.urihttps://avesis.yildiz.edu.tr/yayin/d816ed50-3705-4273-bd11-1df4de9c77c7/a-microstrip-monopole-antenna-design-for-5g-sub-6-ghz-applications-using-deep-learning
dc.identifier.urihttps://hdl.handle.net/11352/6025
dc.identifier.volume20
dc.identifier.wosqualityQ2
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherWiley
dc.relation.ispartofIET Communications
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/openAccess
dc.titleA Microstrip Monopole Antenna Design for 5G Sub-6 GHz Applications Using Deep Learning
dc.typeArticle

Dosyalar

Orijinal paket

Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
Çolak.pdf
Boyut:
1.56 MB
Biçim:
Adobe Portable Document Format

Lisans paketi

Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
license.txt
Boyut:
1.17 KB
Biçim:
Item-specific license agreed upon to submission
Açıklama: