• Türkçe
    • English
  • Türkçe 
    • Türkçe
    • English
  • Giriş
Öğe Göster 
  •   DSpace@FSM Vakıf
  • Fakülteler / Faculties
  • Mühendislik Fakültesi / Faculty of Engineering
  • Bilgisayar Mühendisliği Bölümü
  • Öğe Göster
  •   DSpace@FSM Vakıf
  • Fakülteler / Faculties
  • Mühendislik Fakültesi / Faculty of Engineering
  • Bilgisayar Mühendisliği Bölümü
  • Öğe Göster
JavaScript is disabled for your browser. Some features of this site may not work without it.

Robust University Course Timetabling Problem Subject to Single and Multiple Disruptions

Thumbnail

Göster/Aç

Ana Makale (1.205Mb)

Erişim

info:eu-repo/semantics/embargoedAccess

Tarih

2020

Yazar

Gülcü, Ayla
Akkan, Can

Üst veri

Tüm öğe kaydını göster

Künye

GÜLCÜ, Ayla & Can AKKAN. "Robust University Course Timetabling Problem Subject to Single and Multiple Disruptions". European Journal of Operation Research, 283.2 (2020): 630-646.

Özet

University course timetables are often finalized in stages, in between which, changes in the data make the earlier version infeasible. As each version is announced to the community, it is desirable to have a robust initial timetable, i.e. one that can be repaired with limited number of changes and yielding a new solution whose quality is degraded as little as possible. We define two versions of the robust timetabling problem, first one assuming that only one lecture is disrupted (its scheduled period ceasing to be fea- sible) and the second one assuming multiple lectures are disrupted. The objective of the algorithms is to identify a good Pareto front defined by the solution quality (penalty associated with soft-constraint violations) and the robustness measure. Two versions of a multi-objective simulated annealing (MOSA) algorithm is developed (MOSA-SD and MOSA-SAA, for single and multiple disruptions, respectively), with the difference being in the way robustness of a solution is estimated within the MOSA algorithm. Exten- sive computational experiments done using the International Timetabling Competition ITC-2007 data set confirm that MOSA-SD outperforms a genetic algorithm from the literature, and MOSA-SAA outperforms MOSA-SD when there are multiple disruptions. For MOSA-SAA an innovative solution network to struc- ture feasible solutions for a set of disruption scenarios has been developed to efficiently perform sample average approximation (SAA) calculations, which can be adopted for other stochastic combinatorial opti- mization problems.

Kaynak

European Journal of Operation Research

Cilt

283

Sayı

2

Bağlantı

https://hdl.handle.net/11352/3467

Koleksiyonlar

  • Bilgisayar Mühendisliği Bölümü [214]
  • Scopus İndeksli Yayınlar / Scopus Indexed Publications [756]
  • WOS İndeksli Yayınlar / WOS Indexed Publications [661]



DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 




| Politika | Rehber | İletişim |

DSpace@FSM

by OpenAIRE
Gelişmiş Arama

sherpa/romeo

Göz at

Tüm DSpaceBölümler & KoleksiyonlarTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreDile GöreBölüme GöreKategoriye GöreYayıncıya GöreErişim ŞekliKurum Yazarına GöreBu KoleksiyonTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreDile GöreBölüme GöreKategoriye GöreYayıncıya GöreErişim ŞekliKurum Yazarına Göre

Hesabım

GirişKayıt

İstatistikler

Google Analitik İstatistiklerini Görüntüle

DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 


|| Politika || Rehber || Kütüphane || FSM Vakıf Üniversitesi || OAI-PMH ||

FSM Vakıf Üniversitesi, İstanbul, Türkiye
İçerikte herhangi bir hata görürseniz, lütfen bildiriniz:

Creative Commons License
FSM Vakıf Üniversitesi Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@FSM:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.