• Türkçe
    • English
  • Türkçe 
    • Türkçe
    • English
  • Giriş
Öğe Göster 
  •   DSpace@FSM Vakıf
  • Fakülteler / Faculties
  • Mühendislik Fakültesi / Faculty of Engineering
  • Bilgisayar Mühendisliği Bölümü
  • Öğe Göster
  •   DSpace@FSM Vakıf
  • Fakülteler / Faculties
  • Mühendislik Fakültesi / Faculty of Engineering
  • Bilgisayar Mühendisliği Bölümü
  • Öğe Göster
JavaScript is disabled for your browser. Some features of this site may not work without it.

MS-TR: A Morphologically Enriched Sentiment Treebank and Recursive Deep Models for Compositional Semantics in Turkish

Thumbnail

Göster/Aç

Ana Makale (5.466Mb)

Erişim

info:eu-repo/semantics/openAccess

Tarih

2021

Yazar

Zeybek, Sultan
Koç, Ebubekir
Seçer, Aydın

Üst veri

Tüm öğe kaydını göster

Künye

ZEYBEK, Sultan, Ebubekir KOÇ & Aydın SEÇER. "MS-TR: A Morphologically Enriched Sentiment Treebank and Recursive Deep Models for Compositional Semantics in Turkish". Cogent Engineering, 8.1 (2021): 1-27.

Özet

Recursive Deep Models have been used as powerful models to learn compositional representations of text for many natural language processing tasks. However, they require structured input (i.e. sentiment treebank) to encode sentences based on their tree-based structure to enable them to learn latent semantics of words using recursive composition functions. In this paper, we present our contributions and efforts for the Turkish Sentiment Treebank construction. We introduce MS-TR, a Morphologically Enriched Sentiment Treebank, which was implemented for training Recursive Deep Models to address compositional sentiment analysis for Turkish, which is one of the well-known Morphologically Rich Language (MRL). We propose a semi-supervised automatic annotation, as a distantsupervision approach, using morphological features of words to infer the polarity of the inner nodes of MS-TR as positive and negative. The proposed annotation model has four different annotation levels: morph-level, stem-level, token-level, and review-level. Each annotation level’s contribution was tested using three different domain datasets, including product reviews, movie reviews, and the Turkish Natural Corpus essays. Comparative results were obtained with the Recursive Neural Tensor Networks (RNTN) model which is operated over MS-TR, and conventional machine learning methods. Experiments proved that RNTN outperformed the baseline methods and achieved much better accuracy results compared to the baseline methods, which cannot accurately capture the aggregated sentiment information.

Kaynak

Cogent Engineering

Cilt

8

Sayı

1

Bağlantı

https://hdl.handle.net/11352/3555

Koleksiyonlar

  • Bilgisayar Mühendisliği Bölümü [214]
  • Scopus İndeksli Yayınlar / Scopus Indexed Publications [756]
  • WOS İndeksli Yayınlar / WOS Indexed Publications [661]



DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 




| Politika | Rehber | İletişim |

DSpace@FSM

by OpenAIRE
Gelişmiş Arama

sherpa/romeo

Göz at

Tüm DSpaceBölümler & KoleksiyonlarTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreDile GöreBölüme GöreKategoriye GöreYayıncıya GöreErişim ŞekliKurum Yazarına GöreBu KoleksiyonTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreDile GöreBölüme GöreKategoriye GöreYayıncıya GöreErişim ŞekliKurum Yazarına Göre

Hesabım

GirişKayıt

İstatistikler

Google Analitik İstatistiklerini Görüntüle

DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 


|| Politika || Rehber || Kütüphane || FSM Vakıf Üniversitesi || OAI-PMH ||

FSM Vakıf Üniversitesi, İstanbul, Türkiye
İçerikte herhangi bir hata görürseniz, lütfen bildiriniz:

Creative Commons License
FSM Vakıf Üniversitesi Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@FSM:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.