Lagrangian Submanifolds with Constant Angle functions of the Nearly Kähler S3 × S3
Yükleniyor...
Dosyalar
Tarih
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Elsevier
Erişim Hakkı
info:eu-repo/semantics/embargoedAccess
Özet
We study Lagrangian submanifolds of the nearly Kähler S3 × S3 with respect to their so called angle functions. We show that if all angle functions are constant, then the submanifold is either totally geodesic or has constant sectional curvature and there is a classification theorem that follows from Dioos et al. (2018). Moreover, we show that if precisely one angle function is constant, then it must be equal to 0, π 3 or 2π 3 . Using then two remarkable constructions together with the classification of Lagrangian submanifolds of which the first component has nowhere maximal rank from, Bektaş et al. (2018), we obtain a classification of such Lagrangian submanifolds.
Açıklama
Anahtar Kelimeler
Local Submanifolds, Immersions, Lagrangian Submanifolds, Nearly Kähler Manifolds
Kaynak
Journal of Geometry and Physics
WoS Q Değeri
Scopus Q Değeri
Cilt
127
Sayı
Künye
BEKTAŞ, Burcu, Marilena MORUZ, Joeri Van der VEKEN & Luc VRANCKEN. "Lagrangian Submanifolds with Constant Angle functions of the Nearly Kähler S3 × S3". Journal of Geometry and Physics, 127 (2018): 1-13.










